-
Notifications
You must be signed in to change notification settings - Fork 36
/
jFireflyAlgorithm.m
104 lines (95 loc) · 2.44 KB
/
jFireflyAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
%[2010]-"Firefly algorithm,stochastic test functions and design
%optimization"
% (9/12/2020)
function FA = jFireflyAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
alpha = 1; % constant
beta0 = 1; % light amplitude
gamma = 1; % absorbtion coefficient
theta = 0.97; % control alpha
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'beta0'), beta0 = opts.beta0; end
if isfield(opts,'gamma'), gamma = opts.gamma; end
if isfield(opts,'alpha'), alpha = opts.alpha; end
if isfield(opts,'theta'), theta = opts.theta; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Best solution
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Pre
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Generation
while t <= max_Iter
% Alpha update
alpha = alpha * theta;
% Rank firefly based on their light intensity
[fit, idx] = sort(fit,'ascend');
X = X(idx,:);
for i = 1:N
% The attractiveness parameter
for j = 1:N
% Update moves if firefly j brighter than firefly i
if fit(i) > fit(j)
% Compute Euclidean distance
r = sqrt(sum((X(i,:) - X(j,:)) .^ 2));
% Beta (2)
beta = beta0 * exp(-gamma * r ^ 2);
for d = 1:dim
% Update position (3)
eps = rand() - 0.5;
X(i,d) = X(i,d) + beta * (X(j,d) - X(i,d)) + alpha * eps;
end
% Boundary
XB = X(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
X(i,:) = XB;
% Fitness
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Update global best firefly
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
end
end
curve(t) = fitG;
fprintf('\nGeneration %d Best (FA)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
FA.sf = Sf;
FA.ff = sFeat;
FA.nf = length(Sf);
FA.c = curve;
FA.f = feat;
FA.l = label;
end