-
Notifications
You must be signed in to change notification settings - Fork 5
/
constr_names1.pl
9412 lines (9412 loc) · 683 KB
/
constr_names1.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
constr_name(<a href=%MML%hidden.html#M1>m1_hidden</a>,set,set).
constr_name(<a href=%MML%hidden.html#R1>r1_hidden</a>,'=',equals).
constr_name(<a href=%MML%hidden.html#R2>r2_hidden</a>,in,in).
constr_name(<a href=%MML%tarski.html#K1>k1_tarski</a>,'{..}',singleton).
constr_name(<a href=%MML%tarski.html#K2>k2_tarski</a>,'{..}__2',unordered_pair).
constr_name(<a href=%MML%tarski.html#R1>r1_tarski</a>,'c=',subset).
constr_name(<a href=%MML%tarski.html#K3>k3_tarski</a>,union,union).
constr_name(<a href=%MML%tarski.html#K4>k4_tarski</a>,'[..]',ordered_pair).
constr_name(<a href=%MML%tarski.html#R2>r2_tarski</a>,are_equipotent,are_equipotent).
constr_name(<a href=%MML%xboole_0.html#K1>k1_xboole_0</a>,'{}',empty_set).
constr_name(<a href=%MML%xboole_0.html#K2>k2_xboole_0</a>,'\\/',set_union2).
constr_name(<a href=%MML%xboole_0.html#K3>k3_xboole_0</a>,'/\\',set_intersection2).
constr_name(<a href=%MML%xboole_0.html#K4>k4_xboole_0</a>,'\\',set_difference).
constr_name(<a href=%MML%xboole_0.html#V1>v1_xboole_0</a>,empty,empty).
constr_name(<a href=%MML%xboole_0.html#R1>r1_xboole_0</a>,misses,disjoint).
constr_name(<a href=%MML%xboole_0.html#R2>r2_xboole_0</a>,'c<',proper_subset).
constr_name(<a href=%MML%xboole_0.html#R3>r3_xboole_0</a>,'are_c=-comparable',inclusion_comparable).
constr_name(<a href=%MML%xboole_0.html#K5>k5_xboole_0</a>,'\\+\\',symmetric_difference).
constr_name(<a href=%MML%enumset1.html#K1>k1_enumset1</a>,'{..}__3',unordered_triple).
constr_name(<a href=%MML%enumset1.html#K2>k2_enumset1</a>,'{..}__4',unordered_quadruple).
constr_name(<a href=%MML%enumset1.html#K3>k3_enumset1</a>,'{..}__5',unordered_quintuple).
constr_name(<a href=%MML%enumset1.html#K4>k4_enumset1</a>,'{..}__6',unordered_sextuple).
constr_name(<a href=%MML%enumset1.html#K5>k5_enumset1</a>,'{..}__7',unordered_septuple).
constr_name(<a href=%MML%enumset1.html#K6>k6_enumset1</a>,'{..}__8',unordered_octuple).
constr_name(<a href=%MML%zfmisc_1.html#K1>k1_zfmisc_1</a>,bool,powerset).
constr_name(<a href=%MML%zfmisc_1.html#K2>k2_zfmisc_1</a>,'[:..:]',cartesian_product2).
constr_name(<a href=%MML%zfmisc_1.html#K3>k3_zfmisc_1</a>,'[:..:]__2',cartesian_product3).
constr_name(<a href=%MML%zfmisc_1.html#K4>k4_zfmisc_1</a>,'[:..:]__3',cartesian_product4).
constr_name(<a href=%MML%subset_1.html#M1>m1_subset_1</a>,'Element',element).
constr_name(<a href=%MML%subset_1.html#M2>m2_subset_1</a>,'Element__2',subset_element).
constr_name(<a href=%MML%subset_1.html#K1>k1_subset_1</a>,'{}__2',empty_subset).
constr_name(<a href=%MML%subset_1.html#K2>k2_subset_1</a>,'[#]',cast_to_subset).
constr_name(<a href=%MML%subset_1.html#K3>k3_subset_1</a>,'`',subset_complement).
constr_name(<a href=%MML%subset_1.html#K4>k4_subset_1</a>,'\\/__2',subset_union2).
constr_name(<a href=%MML%subset_1.html#K5>k5_subset_1</a>,'/\\__2',subset_intersection2).
constr_name(<a href=%MML%subset_1.html#K6>k6_subset_1</a>,'\\__2',subset_difference).
constr_name(<a href=%MML%subset_1.html#K7>k7_subset_1</a>,'\\+\\__2',subset_symmetric_difference).
constr_name(<a href=%MML%subset_1.html#R1>r1_subset_1</a>,misses__2,disjoint_nonempty).
constr_name(<a href=%MML%subset_1.html#R2>r2_subset_1</a>,meets,meets_nonempty).
constr_name(<a href=%MML%subset_1.html#K8>k8_subset_1</a>,choose,choose_element).
constr_name(<a href=%MML%setfam_1.html#K1>k1_setfam_1</a>,meet,_).
constr_name(<a href=%MML%setfam_1.html#R1>r1_setfam_1</a>,is_finer_than,_).
constr_name(<a href=%MML%setfam_1.html#R2>r2_setfam_1</a>,is_coarser_than,_).
constr_name(<a href=%MML%setfam_1.html#K2>k2_setfam_1</a>,'UNION',_).
constr_name(<a href=%MML%setfam_1.html#K3>k3_setfam_1</a>,'INTERSECTION',_).
constr_name(<a href=%MML%setfam_1.html#K4>k4_setfam_1</a>,'DIFFERENCE',_).
constr_name(<a href=%MML%setfam_1.html#K5>k5_setfam_1</a>,union__2,_).
constr_name(<a href=%MML%setfam_1.html#K6>k6_setfam_1</a>,meet__2,_).
constr_name(<a href=%MML%setfam_1.html#K7>k7_setfam_1</a>,'COMPLEMENT',_).
constr_name(<a href=%MML%setfam_1.html#V1>v1_setfam_1</a>,'with_non-empty_elements',with_non_empty_elements).
constr_name(<a href=%MML%setfam_1.html#K8>k8_setfam_1</a>,'Intersect',_).
constr_name(<a href=%MML%setfam_1.html#V2>v2_setfam_1</a>,'empty-membered',_).
constr_name(<a href=%MML%relat_1.html#V1>v1_relat_1</a>,'Relation-like',relation).
constr_name(<a href=%MML%relat_1.html#K1>k1_relat_1</a>,dom,relation_dom).
constr_name(<a href=%MML%relat_1.html#K2>k2_relat_1</a>,rng,relation_rng).
constr_name(<a href=%MML%relat_1.html#K3>k3_relat_1</a>,field,relation_field).
constr_name(<a href=%MML%relat_1.html#K4>k4_relat_1</a>,'~',relation_inverse).
constr_name(<a href=%MML%relat_1.html#K5>k5_relat_1</a>,'*',relation_composition).
constr_name(<a href=%MML%relat_1.html#V2>v2_relat_1</a>,'non-empty',relation_non_empty).
constr_name(<a href=%MML%relat_1.html#K6>k6_relat_1</a>,id,identity_relation).
constr_name(<a href=%MML%relat_1.html#K7>k7_relat_1</a>,'|',relation_dom_restriction).
constr_name(<a href=%MML%relat_1.html#K8>k8_relat_1</a>,'|__2',relation_rng_restriction).
constr_name(<a href=%MML%relat_1.html#K9>k9_relat_1</a>,'.:',relation_image).
constr_name(<a href=%MML%relat_1.html#K10>k10_relat_1</a>,'"',relation_inverse_image).
constr_name(<a href=%MML%relat_1.html#V3>v3_relat_1</a>,'empty-yielding',relation_empty_yielding).
constr_name(<a href=%MML%funct_1.html#V1>v1_funct_1</a>,'Function-like',function).
constr_name(<a href=%MML%funct_1.html#K1>k1_funct_1</a>,'.',apply).
constr_name(<a href=%MML%funct_1.html#V2>v2_funct_1</a>,'one-to-one',one_to_one).
constr_name(<a href=%MML%funct_1.html#K2>k2_funct_1</a>,'"__2',function_inverse).
constr_name(<a href=%MML%relat_2.html#R1>r1_relat_2</a>,is_reflexive_in,is_reflexive_in).
constr_name(<a href=%MML%relat_2.html#R2>r2_relat_2</a>,is_irreflexive_in,is_irreflexive_in).
constr_name(<a href=%MML%relat_2.html#R3>r3_relat_2</a>,is_symmetric_in,is_symmetric_in).
constr_name(<a href=%MML%relat_2.html#R4>r4_relat_2</a>,is_antisymmetric_in,is_antisymmetric_in).
constr_name(<a href=%MML%relat_2.html#R5>r5_relat_2</a>,is_asymmetric_in,is_asymmetric_in).
constr_name(<a href=%MML%relat_2.html#R6>r6_relat_2</a>,is_connected_in,is_connected_in).
constr_name(<a href=%MML%relat_2.html#R7>r7_relat_2</a>,is_strongly_connected_in,is_strongly_connected_in).
constr_name(<a href=%MML%relat_2.html#R8>r8_relat_2</a>,is_transitive_in,is_transitive_in).
constr_name(<a href=%MML%relat_2.html#V1>v1_relat_2</a>,reflexive,reflexive).
constr_name(<a href=%MML%relat_2.html#V2>v2_relat_2</a>,irreflexive,irreflexive).
constr_name(<a href=%MML%relat_2.html#V3>v3_relat_2</a>,symmetric,symmetric).
constr_name(<a href=%MML%relat_2.html#V4>v4_relat_2</a>,antisymmetric,antisymmetric).
constr_name(<a href=%MML%relat_2.html#V5>v5_relat_2</a>,asymmetric,asymmetric).
constr_name(<a href=%MML%relat_2.html#V6>v6_relat_2</a>,connected,connected).
constr_name(<a href=%MML%relat_2.html#V7>v7_relat_2</a>,strongly_connected,strongly_connected).
constr_name(<a href=%MML%relat_2.html#V8>v8_relat_2</a>,transitive,transitive).
constr_name(<a href=%MML%ordinal1.html#K1>k1_ordinal1</a>,succ,succ).
constr_name(<a href=%MML%ordinal1.html#V1>v1_ordinal1</a>,'epsilon-transitive',epsilon_transitive).
constr_name(<a href=%MML%ordinal1.html#V2>v2_ordinal1</a>,'epsilon-connected',epsilon_connected).
constr_name(<a href=%MML%ordinal1.html#V3>v3_ordinal1</a>,ordinal,ordinal).
constr_name(<a href=%MML%ordinal1.html#R1>r1_ordinal1</a>,'c=__2',ordinal_subset).
constr_name(<a href=%MML%ordinal1.html#V4>v4_ordinal1</a>,being_limit_ordinal,being_limit_ordinal).
constr_name(<a href=%MML%ordinal1.html#V5>v5_ordinal1</a>,'T-Sequence-like',transfinite_sequence).
constr_name(<a href=%MML%ordinal1.html#M1>m1_ordinal1</a>,'T-Sequence',transfinite_sequence_of).
constr_name(<a href=%MML%ordinal1.html#K2>k2_ordinal1</a>,'|__3',tseq_dom_restriction).
constr_name(<a href=%MML%ordinal1.html#V6>v6_ordinal1</a>,'c=-linear',inclusion_linear).
constr_name(<a href=%MML%wellord1.html#K1>k1_wellord1</a>,'-Seg',_).
constr_name(<a href=%MML%wellord1.html#V1>v1_wellord1</a>,well_founded,well_founded_relation).
constr_name(<a href=%MML%wellord1.html#R1>r1_wellord1</a>,is_well_founded_in,is_well_founded_in).
constr_name(<a href=%MML%wellord1.html#V2>v2_wellord1</a>,'well-ordering',well_ordering).
constr_name(<a href=%MML%wellord1.html#R2>r2_wellord1</a>,well_orders,well_orders).
constr_name(<a href=%MML%wellord1.html#K2>k2_wellord1</a>,'|_2',relation_restriction).
constr_name(<a href=%MML%wellord1.html#R3>r3_wellord1</a>,is_isomorphism_of,relation_isomorphism).
constr_name(<a href=%MML%wellord1.html#R4>r4_wellord1</a>,are_isomorphic,isomorphic_relations).
constr_name(<a href=%MML%wellord1.html#K3>k3_wellord1</a>,canonical_isomorphism_of,canonical_isomorphism_of).
constr_name(<a href=%MML%relset_1.html#M1>m1_relset_1</a>,'Relation',relation_of2).
constr_name(<a href=%MML%relset_1.html#M2>m2_relset_1</a>,'Relation__2',relation_of2_as_subset).
constr_name(<a href=%MML%relset_1.html#K1>k1_relset_1</a>,'\\/__3',_).
constr_name(<a href=%MML%relset_1.html#K2>k2_relset_1</a>,'/\\__3',_).
constr_name(<a href=%MML%relset_1.html#K3>k3_relset_1</a>,'\\__3',_).
constr_name(<a href=%MML%relset_1.html#K4>k4_relset_1</a>,dom__2,_).
constr_name(<a href=%MML%relset_1.html#K5>k5_relset_1</a>,rng__2,_).
constr_name(<a href=%MML%relset_1.html#K6>k6_relset_1</a>,'~__2',_).
constr_name(<a href=%MML%relset_1.html#K7>k7_relset_1</a>,'*__2',_).
constr_name(<a href=%MML%relset_1.html#K8>k8_relset_1</a>,'|__4',_).
constr_name(<a href=%MML%relset_1.html#K9>k9_relset_1</a>,'|__5',_).
constr_name(<a href=%MML%relset_1.html#K10>k10_relset_1</a>,'.:__2',_).
constr_name(<a href=%MML%relset_1.html#K11>k11_relset_1</a>,'"__3',_).
constr_name(<a href=%MML%partfun1.html#K1>k1_partfun1</a>,'*__3',_).
constr_name(<a href=%MML%partfun1.html#K2>k2_partfun1</a>,'|__6',_).
constr_name(<a href=%MML%partfun1.html#K3>k3_partfun1</a>,'<:..:>',_).
constr_name(<a href=%MML%partfun1.html#V1>v1_partfun1</a>,total,_).
constr_name(<a href=%MML%partfun1.html#K4>k4_partfun1</a>,'PFuncs',_).
constr_name(<a href=%MML%partfun1.html#R1>r1_partfun1</a>,tolerates,_).
constr_name(<a href=%MML%partfun1.html#K5>k5_partfun1</a>,'TotFuncs',_).
constr_name(<a href=%MML%partfun1.html#K6>k6_partfun1</a>,id__2,_).
constr_name(<a href=%MML%mcart_1.html#K1>k1_mcart_1</a>,'`1',pair_first).
constr_name(<a href=%MML%mcart_1.html#K2>k2_mcart_1</a>,'`2',pair_second).
constr_name(<a href=%MML%mcart_1.html#K3>k3_mcart_1</a>,'[..]__2',_).
constr_name(<a href=%MML%mcart_1.html#K4>k4_mcart_1</a>,'[..]__3',_).
constr_name(<a href=%MML%mcart_1.html#K5>k5_mcart_1</a>,'`1__2',_).
constr_name(<a href=%MML%mcart_1.html#K6>k6_mcart_1</a>,'`2__2',_).
constr_name(<a href=%MML%mcart_1.html#K7>k7_mcart_1</a>,'`3',_).
constr_name(<a href=%MML%mcart_1.html#K8>k8_mcart_1</a>,'`1__3',_).
constr_name(<a href=%MML%mcart_1.html#K9>k9_mcart_1</a>,'`2__3',_).
constr_name(<a href=%MML%mcart_1.html#K10>k10_mcart_1</a>,'`3__2',_).
constr_name(<a href=%MML%mcart_1.html#K11>k11_mcart_1</a>,'`4',_).
constr_name(<a href=%MML%mcart_1.html#K12>k12_mcart_1</a>,'[:..:]__4',_).
constr_name(<a href=%MML%mcart_1.html#K13>k13_mcart_1</a>,'[:..:]__5',_).
constr_name(<a href=%MML%mcart_1.html#K14>k14_mcart_1</a>,'[:..:]__6',_).
constr_name(<a href=%MML%mcart_1.html#K15>k15_mcart_1</a>,pr1,_).
constr_name(<a href=%MML%mcart_1.html#K16>k16_mcart_1</a>,pr2,_).
constr_name(<a href=%MML%mcart_1.html#K17>k17_mcart_1</a>,'`11',_).
constr_name(<a href=%MML%mcart_1.html#K18>k18_mcart_1</a>,'`12',_).
constr_name(<a href=%MML%mcart_1.html#K19>k19_mcart_1</a>,'`21',_).
constr_name(<a href=%MML%mcart_1.html#K20>k20_mcart_1</a>,'`22',_).
constr_name(<a href=%MML%wellord2.html#K1>k1_wellord2</a>,'RelIncl',_).
constr_name(<a href=%MML%wellord2.html#K2>k2_wellord2</a>,order_type_of,_).
constr_name(<a href=%MML%wellord2.html#R1>r1_wellord2</a>,is_order_type_of,_).
constr_name(<a href=%MML%wellord2.html#R2>r2_wellord2</a>,are_equipotent__2,_).
constr_name(<a href=%MML%funct_2.html#V1>v1_funct_2</a>,quasi_total,quasi_total).
constr_name(<a href=%MML%funct_2.html#K1>k1_funct_2</a>,'Funcs',_).
constr_name(<a href=%MML%funct_2.html#K2>k2_funct_2</a>,'.:__3',function_image).
constr_name(<a href=%MML%funct_2.html#K3>k3_funct_2</a>,'"__4',_).
constr_name(<a href=%MML%funct_2.html#K4>k4_funct_2</a>,'*__4',_).
constr_name(<a href=%MML%funct_2.html#V2>v2_funct_2</a>,onto,onto).
constr_name(<a href=%MML%funct_2.html#V3>v3_funct_2</a>,bijective,bijective).
constr_name(<a href=%MML%funct_2.html#K5>k5_funct_2</a>,'*__5',_).
constr_name(<a href=%MML%funct_2.html#K6>k6_funct_2</a>,'"__5',_).
constr_name(<a href=%MML%funct_2.html#K7>k7_funct_2</a>,'*__6',_).
constr_name(<a href=%MML%funct_2.html#K8>k8_funct_2</a>,'.__2',_).
constr_name(<a href=%MML%funct_2.html#K9>k9_funct_2</a>,':->',_).
constr_name(<a href=%MML%funct_3.html#K1>k1_funct_3</a>,'.:__4',_).
constr_name(<a href=%MML%funct_3.html#K2>k2_funct_3</a>,'.:__5',_).
constr_name(<a href=%MML%funct_3.html#K3>k3_funct_3</a>,'"__6',_).
constr_name(<a href=%MML%funct_3.html#K4>k4_funct_3</a>,chi,_).
constr_name(<a href=%MML%funct_3.html#K5>k5_funct_3</a>,chi__2,_).
constr_name(<a href=%MML%funct_3.html#K6>k6_funct_3</a>,incl,_).
constr_name(<a href=%MML%funct_3.html#K7>k7_funct_3</a>,pr1__2,first_projection).
constr_name(<a href=%MML%funct_3.html#K8>k8_funct_3</a>,pr2__2,second_projection).
constr_name(<a href=%MML%funct_3.html#K9>k9_funct_3</a>,pr1__3,first_projection_as_func_of).
constr_name(<a href=%MML%funct_3.html#K10>k10_funct_3</a>,pr2__3,second_projection_as_func_of).
constr_name(<a href=%MML%funct_3.html#K11>k11_funct_3</a>,delta,_).
constr_name(<a href=%MML%funct_3.html#K12>k12_funct_3</a>,delta__2,_).
constr_name(<a href=%MML%funct_3.html#K13>k13_funct_3</a>,'<:..:>__2',_).
constr_name(<a href=%MML%funct_3.html#K14>k14_funct_3</a>,'<:..:>__3',_).
constr_name(<a href=%MML%funct_3.html#K15>k15_funct_3</a>,'[:..:]__7',_).
constr_name(<a href=%MML%funct_3.html#K16>k16_funct_3</a>,'[:..:]__8',_).
constr_name(<a href=%MML%domain_1.html#K1>k1_domain_1</a>,'[..]__4',_).
constr_name(<a href=%MML%domain_1.html#K2>k2_domain_1</a>,'`1__4',_).
constr_name(<a href=%MML%domain_1.html#K3>k3_domain_1</a>,'`2__4',_).
constr_name(<a href=%MML%domain_1.html#K4>k4_domain_1</a>,'[..]__5',_).
constr_name(<a href=%MML%domain_1.html#K5>k5_domain_1</a>,'[..]__6',_).
constr_name(<a href=%MML%domain_1.html#K6>k6_domain_1</a>,'{..}__9',_).
constr_name(<a href=%MML%domain_1.html#K7>k7_domain_1</a>,'{..}__10',_).
constr_name(<a href=%MML%domain_1.html#K8>k8_domain_1</a>,'{..}__11',_).
constr_name(<a href=%MML%domain_1.html#K9>k9_domain_1</a>,'{..}__12',_).
constr_name(<a href=%MML%domain_1.html#K10>k10_domain_1</a>,'{..}__13',_).
constr_name(<a href=%MML%domain_1.html#K11>k11_domain_1</a>,'{..}__14',_).
constr_name(<a href=%MML%domain_1.html#K12>k12_domain_1</a>,'{..}__15',_).
constr_name(<a href=%MML%domain_1.html#K13>k13_domain_1</a>,'{..}__16',_).
constr_name(<a href=%MML%domain_1.html#K14>k14_domain_1</a>,'`11__2',_).
constr_name(<a href=%MML%domain_1.html#K15>k15_domain_1</a>,'`12__2',_).
constr_name(<a href=%MML%domain_1.html#K16>k16_domain_1</a>,'`21__2',_).
constr_name(<a href=%MML%domain_1.html#K17>k17_domain_1</a>,'`22__2',_).
constr_name(<a href=%MML%binop_1.html#K1>k1_binop_1</a>,'.__3',_).
constr_name(<a href=%MML%binop_1.html#K2>k2_binop_1</a>,'.__4',_).
constr_name(<a href=%MML%binop_1.html#V1>v1_binop_1</a>,commutative,_).
constr_name(<a href=%MML%binop_1.html#V2>v2_binop_1</a>,associative,_).
constr_name(<a href=%MML%binop_1.html#V3>v3_binop_1</a>,idempotent,_).
constr_name(<a href=%MML%binop_1.html#R1>r1_binop_1</a>,is_a_left_unity_wrt,_).
constr_name(<a href=%MML%binop_1.html#R2>r2_binop_1</a>,is_a_right_unity_wrt,_).
constr_name(<a href=%MML%binop_1.html#R3>r3_binop_1</a>,is_a_unity_wrt,_).
constr_name(<a href=%MML%binop_1.html#K3>k3_binop_1</a>,the_unity_wrt,_).
constr_name(<a href=%MML%binop_1.html#R4>r4_binop_1</a>,is_left_distributive_wrt,_).
constr_name(<a href=%MML%binop_1.html#R5>r5_binop_1</a>,is_right_distributive_wrt,_).
constr_name(<a href=%MML%binop_1.html#R6>r6_binop_1</a>,is_distributive_wrt,_).
constr_name(<a href=%MML%binop_1.html#R7>r7_binop_1</a>,is_distributive_wrt__2,_).
constr_name(<a href=%MML%funcop_1.html#K1>k1_funcop_1</a>,'~__3',_).
constr_name(<a href=%MML%funcop_1.html#K2>k2_funcop_1</a>,'-->',_).
constr_name(<a href=%MML%funcop_1.html#K3>k3_funcop_1</a>,'.:__6',_).
constr_name(<a href=%MML%funcop_1.html#K4>k4_funcop_1</a>,'[:]',_).
constr_name(<a href=%MML%funcop_1.html#K5>k5_funcop_1</a>,'[;]',_).
constr_name(<a href=%MML%funcop_1.html#K6>k6_funcop_1</a>,'.:__7',_).
constr_name(<a href=%MML%funcop_1.html#K7>k7_funcop_1</a>,'[:]__2',_).
constr_name(<a href=%MML%funcop_1.html#K8>k8_funcop_1</a>,'[;]__2',_).
constr_name(<a href=%MML%funcop_1.html#K9>k9_funcop_1</a>,rng__3,_).
constr_name(<a href=%MML%funcop_1.html#K10>k10_funcop_1</a>,'~__4',_).
constr_name(<a href=%MML%funcop_1.html#V1>v1_funcop_1</a>,'Function-yielding',function_yielding).
constr_name(<a href=%MML%funct_4.html#K1>k1_funct_4</a>,'+*',_).
constr_name(<a href=%MML%funct_4.html#K2>k2_funct_4</a>,'~__5',_).
constr_name(<a href=%MML%funct_4.html#K3>k3_funct_4</a>,'|:..:|',_).
constr_name(<a href=%MML%funct_4.html#K4>k4_funct_4</a>,'-->__2',_).
constr_name(<a href=%MML%funct_4.html#K5>k5_funct_4</a>,'-->__3',_).
constr_name(<a href=%MML%ordinal2.html#K1>k1_ordinal2</a>,last,_).
constr_name(<a href=%MML%ordinal2.html#K2>k2_ordinal2</a>,'On',_).
constr_name(<a href=%MML%ordinal2.html#K3>k3_ordinal2</a>,'Lim',_).
constr_name(<a href=%MML%ordinal2.html#K4>k4_ordinal2</a>,one,one).
constr_name(<a href=%MML%ordinal2.html#K5>k5_ordinal2</a>,omega,omega).
constr_name(<a href=%MML%ordinal2.html#K6>k6_ordinal2</a>,inf,ordinal_inf).
constr_name(<a href=%MML%ordinal2.html#K7>k7_ordinal2</a>,sup,ordinal_sup).
constr_name(<a href=%MML%ordinal2.html#V1>v1_ordinal2</a>,'Ordinal-yielding',ordinal_yielding).
constr_name(<a href=%MML%ordinal2.html#K8>k8_ordinal2</a>,sup__2,_).
constr_name(<a href=%MML%ordinal2.html#K9>k9_ordinal2</a>,inf__2,_).
constr_name(<a href=%MML%ordinal2.html#K10>k10_ordinal2</a>,lim_sup,_).
constr_name(<a href=%MML%ordinal2.html#K11>k11_ordinal2</a>,lim_inf,_).
constr_name(<a href=%MML%ordinal2.html#R1>r1_ordinal2</a>,is_limes_of,_).
constr_name(<a href=%MML%ordinal2.html#K12>k12_ordinal2</a>,lim,_).
constr_name(<a href=%MML%ordinal2.html#K13>k13_ordinal2</a>,lim__2,_).
constr_name(<a href=%MML%ordinal2.html#V2>v2_ordinal2</a>,increasing,ordinal_increasing).
constr_name(<a href=%MML%ordinal2.html#V3>v3_ordinal2</a>,continuous,ordinal_continuous).
constr_name(<a href=%MML%ordinal2.html#K14>k14_ordinal2</a>,'+^',ordinal_plus).
constr_name(<a href=%MML%ordinal2.html#K15>k15_ordinal2</a>,'*^',ordinal_multiply).
constr_name(<a href=%MML%ordinal2.html#K16>k16_ordinal2</a>,exp,ordinal_exp).
constr_name(<a href=%MML%ordinal2.html#V4>v4_ordinal2</a>,natural,natural).
constr_name(<a href=%MML%ordinal3.html#K1>k1_ordinal3</a>,'+^__2',_).
constr_name(<a href=%MML%ordinal3.html#K2>k2_ordinal3</a>,'+^__3',_).
constr_name(<a href=%MML%ordinal3.html#K3>k3_ordinal3</a>,'*^__2',_).
constr_name(<a href=%MML%ordinal3.html#K4>k4_ordinal3</a>,'*^__3',_).
constr_name(<a href=%MML%ordinal3.html#K5>k5_ordinal3</a>,'-^',_).
constr_name(<a href=%MML%ordinal3.html#K6>k6_ordinal3</a>,'div^',_).
constr_name(<a href=%MML%ordinal3.html#K7>k7_ordinal3</a>,'mod^',_).
constr_name(<a href=%MML%arytm_3.html#K1>k1_arytm_3</a>,'+^__4',_).
constr_name(<a href=%MML%arytm_3.html#K2>k2_arytm_3</a>,'*^__4',_).
constr_name(<a href=%MML%arytm_3.html#R1>r1_arytm_3</a>,are_relative_prime,are_relative_prime).
constr_name(<a href=%MML%arytm_3.html#R2>r2_arytm_3</a>,divides,_).
constr_name(<a href=%MML%arytm_3.html#K3>k3_arytm_3</a>,lcm,_).
constr_name(<a href=%MML%arytm_3.html#K4>k4_arytm_3</a>,hcf,_).
constr_name(<a href=%MML%arytm_3.html#K5>k5_arytm_3</a>,'RED',_).
constr_name(<a href=%MML%arytm_3.html#K6>k6_arytm_3</a>,'RAT+',positive_rationals).
constr_name(<a href=%MML%arytm_3.html#K7>k7_arytm_3</a>,numerator,numerator).
constr_name(<a href=%MML%arytm_3.html#K8>k8_arytm_3</a>,denominator,denominator).
constr_name(<a href=%MML%arytm_3.html#K9>k9_arytm_3</a>,'/',_).
constr_name(<a href=%MML%arytm_3.html#K10>k10_arytm_3</a>,'+',_).
constr_name(<a href=%MML%arytm_3.html#K11>k11_arytm_3</a>,'*'',_).
constr_name(<a href=%MML%arytm_3.html#K12>k12_arytm_3</a>,'{}__3',_).
constr_name(<a href=%MML%arytm_3.html#K13>k13_arytm_3</a>,one__2,_).
constr_name(<a href=%MML%arytm_3.html#R3>r3_arytm_3</a>,'<='',_).
constr_name(<a href=%MML%arytm_2.html#K1>k1_arytm_2</a>,'DEDEKIND_CUTS',_).
constr_name(<a href=%MML%arytm_2.html#K2>k2_arytm_2</a>,'REAL+',_).
constr_name(<a href=%MML%arytm_2.html#K3>k3_arytm_2</a>,'DEDEKIND_CUT',_).
constr_name(<a href=%MML%arytm_2.html#K4>k4_arytm_2</a>,'GLUED',_).
constr_name(<a href=%MML%arytm_2.html#R1>r1_arytm_2</a>,'<='__2',_).
constr_name(<a href=%MML%arytm_2.html#K5>k5_arytm_2</a>,'+__2',_).
constr_name(<a href=%MML%arytm_2.html#K6>k6_arytm_2</a>,'*'__2',_).
constr_name(<a href=%MML%arytm_2.html#K7>k7_arytm_2</a>,'+__3',_).
constr_name(<a href=%MML%arytm_2.html#K8>k8_arytm_2</a>,'*'__3',_).
constr_name(<a href=%MML%arytm_1.html#K1>k1_arytm_1</a>,'-'',_).
constr_name(<a href=%MML%arytm_1.html#K2>k2_arytm_1</a>,'-',_).
constr_name(<a href=%MML%finset_1.html#V1>v1_finset_1</a>,finite,finite).
constr_name(<a href=%MML%finsub_1.html#V1>v1_finsub_1</a>,'cup-closed',cup_closed).
constr_name(<a href=%MML%finsub_1.html#V2>v2_finsub_1</a>,'cap-closed',cap_closed).
constr_name(<a href=%MML%finsub_1.html#V3>v3_finsub_1</a>,'diff-closed',diff_closed).
constr_name(<a href=%MML%finsub_1.html#V4>v4_finsub_1</a>,preBoolean,preboolean).
constr_name(<a href=%MML%finsub_1.html#K1>k1_finsub_1</a>,'\\/__4',prebool_union2).
constr_name(<a href=%MML%finsub_1.html#K2>k2_finsub_1</a>,'\\__4',prebool_difference).
constr_name(<a href=%MML%finsub_1.html#K3>k3_finsub_1</a>,'/\\__4',prebool_intersection2).
constr_name(<a href=%MML%finsub_1.html#K4>k4_finsub_1</a>,'\\+\\__3',prebool_symm_difference).
constr_name(<a href=%MML%finsub_1.html#K5>k5_finsub_1</a>,'Fin',finite_subsets).
constr_name(<a href=%MML%setwiseo.html#K1>k1_setwiseo</a>,'{}.',_).
constr_name(<a href=%MML%setwiseo.html#V1>v1_setwiseo</a>,having_a_unity,_).
constr_name(<a href=%MML%setwiseo.html#K2>k2_setwiseo</a>,'{..}__17',_).
constr_name(<a href=%MML%setwiseo.html#K3>k3_setwiseo</a>,'{..}__18',_).
constr_name(<a href=%MML%setwiseo.html#K4>k4_setwiseo</a>,'{..}__19',_).
constr_name(<a href=%MML%setwiseo.html#K5>k5_setwiseo</a>,'\\/__5',_).
constr_name(<a href=%MML%setwiseo.html#K6>k6_setwiseo</a>,'\\__5',_).
constr_name(<a href=%MML%setwiseo.html#K7>k7_setwiseo</a>,'$$',_).
constr_name(<a href=%MML%setwiseo.html#K8>k8_setwiseo</a>,'.:__8',_).
constr_name(<a href=%MML%setwiseo.html#K9>k9_setwiseo</a>,'FinUnion',_).
constr_name(<a href=%MML%setwiseo.html#K10>k10_setwiseo</a>,'FinUnion__2',_).
constr_name(<a href=%MML%setwiseo.html#K11>k11_setwiseo</a>,singleton,_).
constr_name(<a href=%MML%fraenkel.html#V1>v1_fraenkel</a>,functional,_).
constr_name(<a href=%MML%fraenkel.html#M1>m1_fraenkel</a>,'FUNCTION_DOMAIN',_).
constr_name(<a href=%MML%fraenkel.html#M2>m2_fraenkel</a>,'Element__3',_).
constr_name(<a href=%MML%fraenkel.html#K1>k1_fraenkel</a>,'Funcs__2',_).
constr_name(<a href=%MML%numbers.html#K1>k1_numbers</a>,'REAL',_).
constr_name(<a href=%MML%numbers.html#K2>k2_numbers</a>,'COMPLEX',_).
constr_name(<a href=%MML%numbers.html#K3>k3_numbers</a>,'RAT',_).
constr_name(<a href=%MML%numbers.html#K4>k4_numbers</a>,'INT',_).
constr_name(<a href=%MML%numbers.html#K5>k5_numbers</a>,'NAT',_).
constr_name(<a href=%MML%arytm_0.html#K1>k1_arytm_0</a>,'+__4',_).
constr_name(<a href=%MML%arytm_0.html#K2>k2_arytm_0</a>,'*__7',_).
constr_name(<a href=%MML%arytm_0.html#K3>k3_arytm_0</a>,opp,_).
constr_name(<a href=%MML%arytm_0.html#K4>k4_arytm_0</a>,inv,_).
constr_name(<a href=%MML%arytm_0.html#K5>k5_arytm_0</a>,'[*..*]',_).
constr_name(<a href=%MML%xcmplx_0.html#V1>v1_xcmplx_0</a>,complex,_).
constr_name(<a href=%MML%xcmplx_0.html#K1>k1_xcmplx_0</a>,'i',_).
constr_name(<a href=%MML%xcmplx_0.html#K2>k2_xcmplx_0</a>,'+__5',_).
constr_name(<a href=%MML%xcmplx_0.html#K3>k3_xcmplx_0</a>,'*__8',_).
constr_name(<a href=%MML%xcmplx_0.html#K4>k4_xcmplx_0</a>,'-__2',_).
constr_name(<a href=%MML%xcmplx_0.html#K5>k5_xcmplx_0</a>,'"__7',_).
constr_name(<a href=%MML%xcmplx_0.html#K6>k6_xcmplx_0</a>,'-__3',_).
constr_name(<a href=%MML%xcmplx_0.html#K7>k7_xcmplx_0</a>,'/__2',_).
constr_name(<a href=%MML%xreal_0.html#V1>v1_xreal_0</a>,real,_).
constr_name(<a href=%MML%xreal_0.html#R1>r1_xreal_0</a>,'<=',_).
constr_name(<a href=%MML%xreal_0.html#V2>v2_xreal_0</a>,positive,_).
constr_name(<a href=%MML%xreal_0.html#V3>v3_xreal_0</a>,negative,_).
constr_name(<a href=%MML%real_1.html#K1>k1_real_1</a>,'-__4',_).
constr_name(<a href=%MML%real_1.html#K2>k2_real_1</a>,'"__8',_).
constr_name(<a href=%MML%real_1.html#K3>k3_real_1</a>,'+__6',_).
constr_name(<a href=%MML%real_1.html#K4>k4_real_1</a>,'*__9',_).
constr_name(<a href=%MML%real_1.html#K5>k5_real_1</a>,'-__5',_).
constr_name(<a href=%MML%real_1.html#K6>k6_real_1</a>,'/__3',_).
constr_name(<a href=%MML%square_1.html#K1>k1_square_1</a>,min,_).
constr_name(<a href=%MML%square_1.html#K2>k2_square_1</a>,max,_).
constr_name(<a href=%MML%square_1.html#K3>k3_square_1</a>,min__2,_).
constr_name(<a href=%MML%square_1.html#K4>k4_square_1</a>,max__2,_).
constr_name(<a href=%MML%square_1.html#K5>k5_square_1</a>,'^2',_).
constr_name(<a href=%MML%square_1.html#K6>k6_square_1</a>,'^2__2',_).
constr_name(<a href=%MML%square_1.html#K7>k7_square_1</a>,'^2__3',_).
constr_name(<a href=%MML%square_1.html#K8>k8_square_1</a>,sqrt,_).
constr_name(<a href=%MML%square_1.html#K9>k9_square_1</a>,sqrt__2,_).
constr_name(<a href=%MML%nat_1.html#K1>k1_nat_1</a>,'+__7',_).
constr_name(<a href=%MML%nat_1.html#K2>k2_nat_1</a>,'*__10',_).
constr_name(<a href=%MML%nat_1.html#K3>k3_nat_1</a>,div,_).
constr_name(<a href=%MML%nat_1.html#K4>k4_nat_1</a>,mod,_).
constr_name(<a href=%MML%nat_1.html#R1>r1_nat_1</a>,divides__2,_).
constr_name(<a href=%MML%nat_1.html#K5>k5_nat_1</a>,lcm__2,_).
constr_name(<a href=%MML%nat_1.html#K6>k6_nat_1</a>,hcf__2,_).
constr_name(<a href=%MML%int_1.html#V1>v1_int_1</a>,integer,_).
constr_name(<a href=%MML%int_1.html#R1>r1_int_1</a>,are_congruent_mod,_).
constr_name(<a href=%MML%int_1.html#K1>k1_int_1</a>,'[\\../]',_).
constr_name(<a href=%MML%int_1.html#K2>k2_int_1</a>,'[/..\\]',_).
constr_name(<a href=%MML%int_1.html#K3>k3_int_1</a>,frac,_).
constr_name(<a href=%MML%int_1.html#K4>k4_int_1</a>,frac__2,_).
constr_name(<a href=%MML%int_1.html#K5>k5_int_1</a>,div__2,_).
constr_name(<a href=%MML%int_1.html#K6>k6_int_1</a>,mod__2,_).
constr_name(<a href=%MML%int_1.html#R2>r2_int_1</a>,divides__3,_).
constr_name(<a href=%MML%rat_1.html#V1>v1_rat_1</a>,rational,_).
constr_name(<a href=%MML%rat_1.html#K1>k1_rat_1</a>,denominator__2,_).
constr_name(<a href=%MML%rat_1.html#K2>k2_rat_1</a>,numerator__2,_).
constr_name(<a href=%MML%binop_2.html#K1>k1_binop_2</a>,'-__6',_).
constr_name(<a href=%MML%binop_2.html#K2>k2_binop_2</a>,'"__9',_).
constr_name(<a href=%MML%binop_2.html#K3>k3_binop_2</a>,'+__8',_).
constr_name(<a href=%MML%binop_2.html#K4>k4_binop_2</a>,'-__7',_).
constr_name(<a href=%MML%binop_2.html#K5>k5_binop_2</a>,'*__11',_).
constr_name(<a href=%MML%binop_2.html#K6>k6_binop_2</a>,'/__4',_).
constr_name(<a href=%MML%binop_2.html#K7>k7_binop_2</a>,'-__8',_).
constr_name(<a href=%MML%binop_2.html#K8>k8_binop_2</a>,'"__10',_).
constr_name(<a href=%MML%binop_2.html#K9>k9_binop_2</a>,'+__9',_).
constr_name(<a href=%MML%binop_2.html#K10>k10_binop_2</a>,'-__9',_).
constr_name(<a href=%MML%binop_2.html#K11>k11_binop_2</a>,'*__12',_).
constr_name(<a href=%MML%binop_2.html#K12>k12_binop_2</a>,'/__5',_).
constr_name(<a href=%MML%binop_2.html#K13>k13_binop_2</a>,'-__10',_).
constr_name(<a href=%MML%binop_2.html#K14>k14_binop_2</a>,'"__11',_).
constr_name(<a href=%MML%binop_2.html#K15>k15_binop_2</a>,'+__10',_).
constr_name(<a href=%MML%binop_2.html#K16>k16_binop_2</a>,'-__11',_).
constr_name(<a href=%MML%binop_2.html#K17>k17_binop_2</a>,'*__13',_).
constr_name(<a href=%MML%binop_2.html#K18>k18_binop_2</a>,'/__6',_).
constr_name(<a href=%MML%binop_2.html#K19>k19_binop_2</a>,'-__12',_).
constr_name(<a href=%MML%binop_2.html#K20>k20_binop_2</a>,'+__11',_).
constr_name(<a href=%MML%binop_2.html#K21>k21_binop_2</a>,'-__13',_).
constr_name(<a href=%MML%binop_2.html#K22>k22_binop_2</a>,'*__14',_).
constr_name(<a href=%MML%binop_2.html#K23>k23_binop_2</a>,'+__12',_).
constr_name(<a href=%MML%binop_2.html#K24>k24_binop_2</a>,'*__15',_).
constr_name(<a href=%MML%binop_2.html#K25>k25_binop_2</a>,compcomplex,_).
constr_name(<a href=%MML%binop_2.html#K26>k26_binop_2</a>,invcomplex,_).
constr_name(<a href=%MML%binop_2.html#K27>k27_binop_2</a>,addcomplex,_).
constr_name(<a href=%MML%binop_2.html#K28>k28_binop_2</a>,diffcomplex,_).
constr_name(<a href=%MML%binop_2.html#K29>k29_binop_2</a>,multcomplex,_).
constr_name(<a href=%MML%binop_2.html#K30>k30_binop_2</a>,divcomplex,_).
constr_name(<a href=%MML%binop_2.html#K31>k31_binop_2</a>,compreal,_).
constr_name(<a href=%MML%binop_2.html#K32>k32_binop_2</a>,invreal,_).
constr_name(<a href=%MML%binop_2.html#K33>k33_binop_2</a>,addreal,_).
constr_name(<a href=%MML%binop_2.html#K34>k34_binop_2</a>,diffreal,_).
constr_name(<a href=%MML%binop_2.html#K35>k35_binop_2</a>,multreal,_).
constr_name(<a href=%MML%binop_2.html#K36>k36_binop_2</a>,divreal,_).
constr_name(<a href=%MML%binop_2.html#K37>k37_binop_2</a>,comprat,_).
constr_name(<a href=%MML%binop_2.html#K38>k38_binop_2</a>,invrat,_).
constr_name(<a href=%MML%binop_2.html#K39>k39_binop_2</a>,addrat,_).
constr_name(<a href=%MML%binop_2.html#K40>k40_binop_2</a>,diffrat,_).
constr_name(<a href=%MML%binop_2.html#K41>k41_binop_2</a>,multrat,_).
constr_name(<a href=%MML%binop_2.html#K42>k42_binop_2</a>,divrat,_).
constr_name(<a href=%MML%binop_2.html#K43>k43_binop_2</a>,compint,_).
constr_name(<a href=%MML%binop_2.html#K44>k44_binop_2</a>,addint,_).
constr_name(<a href=%MML%binop_2.html#K45>k45_binop_2</a>,diffint,_).
constr_name(<a href=%MML%binop_2.html#K46>k46_binop_2</a>,multint,_).
constr_name(<a href=%MML%binop_2.html#K47>k47_binop_2</a>,addnat,_).
constr_name(<a href=%MML%binop_2.html#K48>k48_binop_2</a>,multnat,_).
constr_name(<a href=%MML%membered.html#V1>v1_membered</a>,'complex-membered',_).
constr_name(<a href=%MML%membered.html#V2>v2_membered</a>,'real-membered',_).
constr_name(<a href=%MML%membered.html#V3>v3_membered</a>,'rational-membered',_).
constr_name(<a href=%MML%membered.html#V4>v4_membered</a>,'integer-membered',_).
constr_name(<a href=%MML%membered.html#V5>v5_membered</a>,'natural-membered',_).
constr_name(<a href=%MML%complex1.html#K1>k1_complex1</a>,'Re',_).
constr_name(<a href=%MML%complex1.html#K2>k2_complex1</a>,'Im',_).
constr_name(<a href=%MML%complex1.html#K3>k3_complex1</a>,'Re__2',_).
constr_name(<a href=%MML%complex1.html#K4>k4_complex1</a>,'Im__2',_).
constr_name(<a href=%MML%complex1.html#K5>k5_complex1</a>,'0c',_).
constr_name(<a href=%MML%complex1.html#K6>k6_complex1</a>,'1r',_).
constr_name(<a href=%MML%complex1.html#K7>k7_complex1</a>,'i__2',_).
constr_name(<a href=%MML%complex1.html#K8>k8_complex1</a>,'+__13',_).
constr_name(<a href=%MML%complex1.html#K9>k9_complex1</a>,'*__16',_).
constr_name(<a href=%MML%complex1.html#K10>k10_complex1</a>,'-__14',_).
constr_name(<a href=%MML%complex1.html#K11>k11_complex1</a>,'-__15',_).
constr_name(<a href=%MML%complex1.html#K12>k12_complex1</a>,'"__12',_).
constr_name(<a href=%MML%complex1.html#K13>k13_complex1</a>,'/__7',_).
constr_name(<a href=%MML%complex1.html#K14>k14_complex1</a>,'*'__4',_).
constr_name(<a href=%MML%complex1.html#K15>k15_complex1</a>,'*'__5',_).
constr_name(<a href=%MML%complex1.html#K16>k16_complex1</a>,'|....|',_).
constr_name(<a href=%MML%complex1.html#K17>k17_complex1</a>,'|....|__2',_).
constr_name(<a href=%MML%complex1.html#K18>k18_complex1</a>,abs,_).
constr_name(<a href=%MML%absvalue.html#K1>k1_absvalue</a>,sgn,_).
constr_name(<a href=%MML%absvalue.html#K2>k2_absvalue</a>,sgn__2,_).
constr_name(<a href=%MML%card_1.html#V1>v1_card_1</a>,cardinal,_).
constr_name(<a href=%MML%card_1.html#K1>k1_card_1</a>,'Card',_).
constr_name(<a href=%MML%card_1.html#K2>k2_card_1</a>,nextcard,_).
constr_name(<a href=%MML%card_1.html#V2>v2_card_1</a>,limit,_).
constr_name(<a href=%MML%card_1.html#K3>k3_card_1</a>,alef,_).
constr_name(<a href=%MML%card_1.html#K4>k4_card_1</a>,card,_).
constr_name(<a href=%MML%finseq_1.html#K1>k1_finseq_1</a>,'Seg',_).
constr_name(<a href=%MML%finseq_1.html#K2>k2_finseq_1</a>,'Seg__2',_).
constr_name(<a href=%MML%finseq_1.html#V1>v1_finseq_1</a>,'FinSequence-like',_).
constr_name(<a href=%MML%finseq_1.html#K3>k3_finseq_1</a>,len,_).
constr_name(<a href=%MML%finseq_1.html#K4>k4_finseq_1</a>,dom__3,_).
constr_name(<a href=%MML%finseq_1.html#M1>m1_finseq_1</a>,'FinSequence',_).
constr_name(<a href=%MML%finseq_1.html#M2>m2_finseq_1</a>,'FinSequence__2',_).
constr_name(<a href=%MML%finseq_1.html#K5>k5_finseq_1</a>,'<*..*>',_).
constr_name(<a href=%MML%finseq_1.html#K6>k6_finseq_1</a>,'<*>',_).
constr_name(<a href=%MML%finseq_1.html#K7>k7_finseq_1</a>,'^',_).
constr_name(<a href=%MML%finseq_1.html#K8>k8_finseq_1</a>,'^__2',_).
constr_name(<a href=%MML%finseq_1.html#K9>k9_finseq_1</a>,'<*..*>__2',_).
constr_name(<a href=%MML%finseq_1.html#K10>k10_finseq_1</a>,'<*..*>__3',_).
constr_name(<a href=%MML%finseq_1.html#K11>k11_finseq_1</a>,'<*..*>__4',_).
constr_name(<a href=%MML%finseq_1.html#K12>k12_finseq_1</a>,'<*..*>__5',_).
constr_name(<a href=%MML%finseq_1.html#K13>k13_finseq_1</a>,'*__17',_).
constr_name(<a href=%MML%finseq_1.html#V2>v2_finseq_1</a>,'FinSubsequence-like',_).
constr_name(<a href=%MML%finseq_1.html#K14>k14_finseq_1</a>,'Sgm',_).
constr_name(<a href=%MML%finseq_1.html#K15>k15_finseq_1</a>,'Seq',_).
constr_name(<a href=%MML%finseq_1.html#K16>k16_finseq_1</a>,'|__7',_).
constr_name(<a href=%MML%finseq_1.html#K17>k17_finseq_1</a>,'[*]',_).
constr_name(<a href=%MML%zf_lang.html#K1>k1_zf_lang</a>,'VAR',_).
constr_name(<a href=%MML%zf_lang.html#K2>k2_zf_lang</a>,'x.',_).
constr_name(<a href=%MML%zf_lang.html#K3>k3_zf_lang</a>,'<*..*>__6',_).
constr_name(<a href=%MML%zf_lang.html#K4>k4_zf_lang</a>,''='',_).
constr_name(<a href=%MML%zf_lang.html#K5>k5_zf_lang</a>,''in'',_).
constr_name(<a href=%MML%zf_lang.html#K6>k6_zf_lang</a>,''not'',_).
constr_name(<a href=%MML%zf_lang.html#K7>k7_zf_lang</a>,''&'',_).
constr_name(<a href=%MML%zf_lang.html#K8>k8_zf_lang</a>,'All',_).
constr_name(<a href=%MML%zf_lang.html#K9>k9_zf_lang</a>,'WFF',_).
constr_name(<a href=%MML%zf_lang.html#V1>v1_zf_lang</a>,'ZF-formula-like',_).
constr_name(<a href=%MML%zf_lang.html#V2>v2_zf_lang</a>,being_equality,_).
constr_name(<a href=%MML%zf_lang.html#V3>v3_zf_lang</a>,being_membership,_).
constr_name(<a href=%MML%zf_lang.html#V4>v4_zf_lang</a>,negative__2,_).
constr_name(<a href=%MML%zf_lang.html#V5>v5_zf_lang</a>,conjunctive,_).
constr_name(<a href=%MML%zf_lang.html#V6>v6_zf_lang</a>,universal,_).
constr_name(<a href=%MML%zf_lang.html#V7>v7_zf_lang</a>,atomic,_).
constr_name(<a href=%MML%zf_lang.html#K10>k10_zf_lang</a>,''or'',_).
constr_name(<a href=%MML%zf_lang.html#K11>k11_zf_lang</a>,'=>',_).
constr_name(<a href=%MML%zf_lang.html#K12>k12_zf_lang</a>,'<=>',_).
constr_name(<a href=%MML%zf_lang.html#K13>k13_zf_lang</a>,'Ex',_).
constr_name(<a href=%MML%zf_lang.html#V8>v8_zf_lang</a>,disjunctive,_).
constr_name(<a href=%MML%zf_lang.html#V9>v9_zf_lang</a>,conditional,_).
constr_name(<a href=%MML%zf_lang.html#V10>v10_zf_lang</a>,biconditional,_).
constr_name(<a href=%MML%zf_lang.html#V11>v11_zf_lang</a>,existential,_).
constr_name(<a href=%MML%zf_lang.html#K14>k14_zf_lang</a>,'All__2',_).
constr_name(<a href=%MML%zf_lang.html#K15>k15_zf_lang</a>,'Ex__2',_).
constr_name(<a href=%MML%zf_lang.html#K16>k16_zf_lang</a>,'All__3',_).
constr_name(<a href=%MML%zf_lang.html#K17>k17_zf_lang</a>,'Ex__3',_).
constr_name(<a href=%MML%zf_lang.html#K18>k18_zf_lang</a>,'Var1',_).
constr_name(<a href=%MML%zf_lang.html#K19>k19_zf_lang</a>,'Var2',_).
constr_name(<a href=%MML%zf_lang.html#K20>k20_zf_lang</a>,the_argument_of,_).
constr_name(<a href=%MML%zf_lang.html#K21>k21_zf_lang</a>,the_left_argument_of,_).
constr_name(<a href=%MML%zf_lang.html#K22>k22_zf_lang</a>,the_right_argument_of,_).
constr_name(<a href=%MML%zf_lang.html#K23>k23_zf_lang</a>,bound_in,_).
constr_name(<a href=%MML%zf_lang.html#K24>k24_zf_lang</a>,the_scope_of,_).
constr_name(<a href=%MML%zf_lang.html#K25>k25_zf_lang</a>,the_antecedent_of,_).
constr_name(<a href=%MML%zf_lang.html#K26>k26_zf_lang</a>,the_consequent_of,_).
constr_name(<a href=%MML%zf_lang.html#K27>k27_zf_lang</a>,the_left_side_of,_).
constr_name(<a href=%MML%zf_lang.html#K28>k28_zf_lang</a>,the_right_side_of,_).
constr_name(<a href=%MML%zf_lang.html#R1>r1_zf_lang</a>,is_immediate_constituent_of,_).
constr_name(<a href=%MML%zf_lang.html#R2>r2_zf_lang</a>,is_subformula_of,_).
constr_name(<a href=%MML%zf_lang.html#R3>r3_zf_lang</a>,is_proper_subformula_of,_).
constr_name(<a href=%MML%zf_lang.html#K29>k29_zf_lang</a>,'Subformulae',_).
constr_name(<a href=%MML%zf_model.html#K1>k1_zf_model</a>,'Free',_).
constr_name(<a href=%MML%zf_model.html#K2>k2_zf_model</a>,'Free__2',_).
constr_name(<a href=%MML%zf_model.html#K3>k3_zf_model</a>,'VAL',_).
constr_name(<a href=%MML%zf_model.html#K4>k4_zf_model</a>,'St',_).
constr_name(<a href=%MML%zf_model.html#K5>k5_zf_model</a>,'St__2',_).
constr_name(<a href=%MML%zf_model.html#R1>r1_zf_model</a>,'|=',_).
constr_name(<a href=%MML%zf_model.html#R2>r2_zf_model</a>,'|=__2',_).
constr_name(<a href=%MML%zf_model.html#K6>k6_zf_model</a>,the_axiom_of_extensionality,_).
constr_name(<a href=%MML%zf_model.html#K7>k7_zf_model</a>,the_axiom_of_pairs,_).
constr_name(<a href=%MML%zf_model.html#K8>k8_zf_model</a>,the_axiom_of_unions,_).
constr_name(<a href=%MML%zf_model.html#K9>k9_zf_model</a>,the_axiom_of_infinity,_).
constr_name(<a href=%MML%zf_model.html#K10>k10_zf_model</a>,the_axiom_of_power_sets,_).
constr_name(<a href=%MML%zf_model.html#K11>k11_zf_model</a>,the_axiom_of_substitution_for,_).
constr_name(<a href=%MML%zf_model.html#V1>v1_zf_model</a>,being_a_model_of_ZF,_).
constr_name(<a href=%MML%zf_colla.html#K1>k1_zf_colla</a>,'Collapse',_).
constr_name(<a href=%MML%zf_colla.html#R1>r1_zf_colla</a>,'is_epsilon-isomorphism_of',_).
constr_name(<a href=%MML%zf_colla.html#R2>r2_zf_colla</a>,'are_epsilon-isomorphic',_).
constr_name(<a href=%MML%orders_1.html#M1>m1_orders_1</a>,'Choice_Function',_).
constr_name(<a href=%MML%orders_1.html#K1>k1_orders_1</a>,'BOOL',_).
constr_name(<a href=%MML%orders_1.html#V1>v1_orders_1</a>,'being_quasi-order',_).
constr_name(<a href=%MML%orders_1.html#V2>v2_orders_1</a>,'being_partial-order',_).
constr_name(<a href=%MML%orders_1.html#V3>v3_orders_1</a>,'being_linear-order',_).
constr_name(<a href=%MML%orders_1.html#R1>r1_orders_1</a>,quasi_orders,_).
constr_name(<a href=%MML%orders_1.html#R2>r2_orders_1</a>,partially_orders,_).
constr_name(<a href=%MML%orders_1.html#R3>r3_orders_1</a>,linearly_orders,_).
constr_name(<a href=%MML%orders_1.html#R4>r4_orders_1</a>,has_upper_Zorn_property_wrt,_).
constr_name(<a href=%MML%orders_1.html#R5>r5_orders_1</a>,has_lower_Zorn_property_wrt,_).
constr_name(<a href=%MML%orders_1.html#R6>r6_orders_1</a>,is_maximal_in,_).
constr_name(<a href=%MML%orders_1.html#R7>r7_orders_1</a>,is_minimal_in,_).
constr_name(<a href=%MML%orders_1.html#R8>r8_orders_1</a>,is_superior_of,_).
constr_name(<a href=%MML%orders_1.html#R9>r9_orders_1</a>,is_inferior_of,_).
constr_name(<a href=%MML%eqrel_1.html#K1>k1_eqrel_1</a>,nabla,_).
constr_name(<a href=%MML%eqrel_1.html#K2>k2_eqrel_1</a>,'/\\__5',_).
constr_name(<a href=%MML%eqrel_1.html#K3>k3_eqrel_1</a>,'\\/__6',_).
constr_name(<a href=%MML%eqrel_1.html#K4>k4_eqrel_1</a>,'/\\__6',_).
constr_name(<a href=%MML%eqrel_1.html#K5>k5_eqrel_1</a>,'"\\/"',_).
constr_name(<a href=%MML%eqrel_1.html#K6>k6_eqrel_1</a>,'Class',_).
constr_name(<a href=%MML%eqrel_1.html#K7>k7_eqrel_1</a>,'Class__2',_).
constr_name(<a href=%MML%eqrel_1.html#M1>m1_eqrel_1</a>,a_partition,_).
constr_name(<a href=%MML%eqrel_1.html#K8>k8_eqrel_1</a>,'Class__3',_).
constr_name(<a href=%MML%funct_5.html#K1>k1_funct_5</a>,proj1,_).
constr_name(<a href=%MML%funct_5.html#K2>k2_funct_5</a>,proj2,_).
constr_name(<a href=%MML%funct_5.html#K3>k3_funct_5</a>,curry,_).
constr_name(<a href=%MML%funct_5.html#K4>k4_funct_5</a>,uncurry,_).
constr_name(<a href=%MML%funct_5.html#K5>k5_funct_5</a>,'curry'',_).
constr_name(<a href=%MML%funct_5.html#K6>k6_funct_5</a>,'uncurry'',_).
constr_name(<a href=%MML%card_2.html#K1>k1_card_2</a>,'+`',_).
constr_name(<a href=%MML%card_2.html#K2>k2_card_2</a>,'*`',_).
constr_name(<a href=%MML%card_2.html#K3>k3_card_2</a>,exp__2,_).
constr_name(<a href=%MML%trees_1.html#K1>k1_trees_1</a>,'ProperPrefixes',_).
constr_name(<a href=%MML%trees_1.html#V1>v1_trees_1</a>,'Tree-like',_).
constr_name(<a href=%MML%trees_1.html#M1>m1_trees_1</a>,'Element__4',_).
constr_name(<a href=%MML%trees_1.html#K2>k2_trees_1</a>,elementary_tree,_).
constr_name(<a href=%MML%trees_1.html#K3>k3_trees_1</a>,'Leaves',_).
constr_name(<a href=%MML%trees_1.html#K4>k4_trees_1</a>,'|__8',_).
constr_name(<a href=%MML%trees_1.html#M2>m2_trees_1</a>,'Leaf',_).
constr_name(<a href=%MML%trees_1.html#M3>m3_trees_1</a>,'Subtree',_).
constr_name(<a href=%MML%trees_1.html#K5>k5_trees_1</a>,'with-replacement',_).
constr_name(<a href=%MML%trees_1.html#V2>v2_trees_1</a>,'AntiChain_of_Prefixes-like',_).
constr_name(<a href=%MML%trees_1.html#M4>m4_trees_1</a>,'AntiChain_of_Prefixes',_).
constr_name(<a href=%MML%trees_1.html#K6>k6_trees_1</a>,height,_).
constr_name(<a href=%MML%trees_1.html#K7>k7_trees_1</a>,width,_).
constr_name(<a href=%MML%finseq_2.html#K1>k1_finseq_2</a>,idseq,_).
constr_name(<a href=%MML%finseq_2.html#K2>k2_finseq_2</a>,'|->',_).
constr_name(<a href=%MML%finseq_2.html#M1>m1_finseq_2</a>,'FinSequenceSet',_).
constr_name(<a href=%MML%finseq_2.html#K3>k3_finseq_2</a>,'*__18',_).
constr_name(<a href=%MML%finseq_2.html#M2>m2_finseq_2</a>,'Element__5',_).
constr_name(<a href=%MML%finseq_2.html#K4>k4_finseq_2</a>,'-tuples_on',_).
constr_name(<a href=%MML%recdef_1.html#K1>k1_recdef_1</a>,'.__5',_).
constr_name(<a href=%MML%classes1.html#V1>v1_classes1</a>,'subset-closed',_).
constr_name(<a href=%MML%classes1.html#V2>v2_classes1</a>,'being_Tarski-Class',_).
constr_name(<a href=%MML%classes1.html#R1>r1_classes1</a>,'is_Tarski-Class_of',_).
constr_name(<a href=%MML%classes1.html#K1>k1_classes1</a>,'Tarski-Class',_).
constr_name(<a href=%MML%classes1.html#K2>k2_classes1</a>,'Tarski-Class__2',_).
constr_name(<a href=%MML%classes1.html#K3>k3_classes1</a>,'Tarski-Class__3',_).
constr_name(<a href=%MML%classes1.html#K4>k4_classes1</a>,'Rank',_).
constr_name(<a href=%MML%classes1.html#K5>k5_classes1</a>,'the_transitive-closure_of',_).
constr_name(<a href=%MML%classes1.html#K6>k6_classes1</a>,the_rank_of,_).
constr_name(<a href=%MML%card_3.html#V1>v1_card_3</a>,'Cardinal-yielding',_).
constr_name(<a href=%MML%card_3.html#K1>k1_card_3</a>,'Card__2',_).
constr_name(<a href=%MML%card_3.html#K2>k2_card_3</a>,disjoin,_).
constr_name(<a href=%MML%card_3.html#K3>k3_card_3</a>,'Union',_).
constr_name(<a href=%MML%card_3.html#K4>k4_card_3</a>,product,_).
constr_name(<a href=%MML%card_3.html#K5>k5_card_3</a>,pi,_).
constr_name(<a href=%MML%card_3.html#K6>k6_card_3</a>,'Sum',_).
constr_name(<a href=%MML%card_3.html#K7>k7_card_3</a>,'Product',_).
constr_name(<a href=%MML%classes2.html#V1>v1_classes2</a>,universal__2,_).
constr_name(<a href=%MML%classes2.html#K1>k1_classes2</a>,'{..}__20',_).
constr_name(<a href=%MML%classes2.html#K2>k2_classes2</a>,bool__2,_).
constr_name(<a href=%MML%classes2.html#K3>k3_classes2</a>,union__3,_).
constr_name(<a href=%MML%classes2.html#K4>k4_classes2</a>,meet__3,_).
constr_name(<a href=%MML%classes2.html#K5>k5_classes2</a>,'{..}__21',_).
constr_name(<a href=%MML%classes2.html#K6>k6_classes2</a>,'[..]__7',_).
constr_name(<a href=%MML%classes2.html#K7>k7_classes2</a>,'\\/__7',_).
constr_name(<a href=%MML%classes2.html#K8>k8_classes2</a>,'/\\__7',_).
constr_name(<a href=%MML%classes2.html#K9>k9_classes2</a>,'\\__6',_).
constr_name(<a href=%MML%classes2.html#K10>k10_classes2</a>,'\\+\\__4',_).
constr_name(<a href=%MML%classes2.html#K11>k11_classes2</a>,'[:..:]__9',_).
constr_name(<a href=%MML%classes2.html#K12>k12_classes2</a>,'Funcs__3',_).
constr_name(<a href=%MML%classes2.html#K13>k13_classes2</a>,'FinSETS',_).
constr_name(<a href=%MML%classes2.html#K14>k14_classes2</a>,'SETS',_).
constr_name(<a href=%MML%classes2.html#K15>k15_classes2</a>,'Universe_closure',_).
constr_name(<a href=%MML%classes2.html#K16>k16_classes2</a>,'UNIVERSE',_).
constr_name(<a href=%MML%ordinal4.html#K1>k1_ordinal4</a>,'^__3',_).
constr_name(<a href=%MML%ordinal4.html#M1>m1_ordinal4</a>,'Ordinal',_).
constr_name(<a href=%MML%ordinal4.html#M2>m2_ordinal4</a>,'Ordinal-Sequence',_).
constr_name(<a href=%MML%ordinal4.html#K2>k2_ordinal4</a>,'0-element_of',_).
constr_name(<a href=%MML%ordinal4.html#K3>k3_ordinal4</a>,'1-element_of',_).
constr_name(<a href=%MML%ordinal4.html#K4>k4_ordinal4</a>,'.__6',_).
constr_name(<a href=%MML%ordinal4.html#K5>k5_ordinal4</a>,'*__19',_).
constr_name(<a href=%MML%ordinal4.html#K6>k6_ordinal4</a>,succ__2,_).
constr_name(<a href=%MML%ordinal4.html#K7>k7_ordinal4</a>,'+^__5',_).
constr_name(<a href=%MML%ordinal4.html#K8>k8_ordinal4</a>,'*^__5',_).
constr_name(<a href=%MML%finseq_3.html#K1>k1_finseq_3</a>,'-__16',_).
constr_name(<a href=%MML%zfmodel1.html#K1>k1_zfmodel1</a>,'def_func'',_).
constr_name(<a href=%MML%zfmodel1.html#K2>k2_zfmodel1</a>,def_func,_).
constr_name(<a href=%MML%zfmodel1.html#R1>r1_zfmodel1</a>,is_definable_in,_).
constr_name(<a href=%MML%zfmodel1.html#R2>r2_zfmodel1</a>,is_parametrically_definable_in,_).
constr_name(<a href=%MML%zf_lang1.html#K1>k1_zf_lang1</a>,'/__8',_).
constr_name(<a href=%MML%zf_lang1.html#K2>k2_zf_lang1</a>,'!',_).
constr_name(<a href=%MML%zf_lang1.html#K3>k3_zf_lang1</a>,variables_in,_).
constr_name(<a href=%MML%zf_lang1.html#K4>k4_zf_lang1</a>,variables_in__2,_).
constr_name(<a href=%MML%zf_lang1.html#K5>k5_zf_lang1</a>,'/__9',_).
constr_name(<a href=%MML%zf_lang1.html#K6>k6_zf_lang1</a>,'/__10',_).
constr_name(<a href=%MML%zf_refle.html#K1>k1_zf_refle</a>,union__4,_).
constr_name(<a href=%MML%zf_refle.html#K2>k2_zf_refle</a>,union__5,_).
constr_name(<a href=%MML%zf_refle.html#K3>k3_zf_refle</a>,'\\/__8',_).
constr_name(<a href=%MML%zf_refle.html#V1>v1_zf_refle</a>,'DOMAIN-yielding',_).
constr_name(<a href=%MML%zf_refle.html#K4>k4_zf_refle</a>,'Union__2',_).
constr_name(<a href=%MML%zf_refle.html#K5>k5_zf_refle</a>,'.__7',_).
constr_name(<a href=%MML%zfrefle1.html#R1>r1_zfrefle1</a>,'|=__3',_).
constr_name(<a href=%MML%zfrefle1.html#R2>r2_zfrefle1</a>,'<==>',_).
constr_name(<a href=%MML%zfrefle1.html#R3>r3_zfrefle1</a>,is_elementary_subsystem_of,_).
constr_name(<a href=%MML%zfrefle1.html#K1>k1_zfrefle1</a>,'ZF-axioms',_).
constr_name(<a href=%MML%zfrefle1.html#K2>k2_zfrefle1</a>,'ZF-axioms__2',_).
constr_name(<a href=%MML%zfrefle1.html#R4>r4_zfrefle1</a>,is_cofinal_with,_).
constr_name(<a href=%MML%qc_lang1.html#K1>k1_qc_lang1</a>,'QC-variables',_).
constr_name(<a href=%MML%qc_lang1.html#K2>k2_qc_lang1</a>,'bound_QC-variables',_).
constr_name(<a href=%MML%qc_lang1.html#K3>k3_qc_lang1</a>,'fixed_QC-variables',_).
constr_name(<a href=%MML%qc_lang1.html#K4>k4_qc_lang1</a>,'free_QC-variables',_).
constr_name(<a href=%MML%qc_lang1.html#K5>k5_qc_lang1</a>,'QC-pred_symbols',_).
constr_name(<a href=%MML%qc_lang1.html#K6>k6_qc_lang1</a>,the_arity_of,_).
constr_name(<a href=%MML%qc_lang1.html#K7>k7_qc_lang1</a>,'-ary_QC-pred_symbols',_).
constr_name(<a href=%MML%qc_lang1.html#M1>m1_qc_lang1</a>,'QC-variable_list',_).
constr_name(<a href=%MML%qc_lang1.html#V1>v1_qc_lang1</a>,'QC-closed',_).
constr_name(<a href=%MML%qc_lang1.html#K8>k8_qc_lang1</a>,'QC-WFF',_).
constr_name(<a href=%MML%qc_lang1.html#K9>k9_qc_lang1</a>,'!__2',_).
constr_name(<a href=%MML%qc_lang1.html#K10>k10_qc_lang1</a>,'@',_).
constr_name(<a href=%MML%qc_lang1.html#K11>k11_qc_lang1</a>,'VERUM',_).
constr_name(<a href=%MML%qc_lang1.html#K12>k12_qc_lang1</a>,''not'__2',_).
constr_name(<a href=%MML%qc_lang1.html#K13>k13_qc_lang1</a>,''&'__2',_).
constr_name(<a href=%MML%qc_lang1.html#K14>k14_qc_lang1</a>,'All__4',_).
constr_name(<a href=%MML%qc_lang1.html#V2>v2_qc_lang1</a>,atomic__2,_).
constr_name(<a href=%MML%qc_lang1.html#V3>v3_qc_lang1</a>,negative__3,_).
constr_name(<a href=%MML%qc_lang1.html#V4>v4_qc_lang1</a>,conjunctive__2,_).
constr_name(<a href=%MML%qc_lang1.html#V5>v5_qc_lang1</a>,universal__3,_).
constr_name(<a href=%MML%qc_lang1.html#K15>k15_qc_lang1</a>,the_pred_symbol_of,_).
constr_name(<a href=%MML%qc_lang1.html#K16>k16_qc_lang1</a>,the_arguments_of,_).
constr_name(<a href=%MML%qc_lang1.html#K17>k17_qc_lang1</a>,the_argument_of__2,_).
constr_name(<a href=%MML%qc_lang1.html#K18>k18_qc_lang1</a>,the_left_argument_of__2,_).
constr_name(<a href=%MML%qc_lang1.html#K19>k19_qc_lang1</a>,the_right_argument_of__2,_).
constr_name(<a href=%MML%qc_lang1.html#K20>k20_qc_lang1</a>,bound_in__2,_).
constr_name(<a href=%MML%qc_lang1.html#K21>k21_qc_lang1</a>,the_scope_of__2,_).
constr_name(<a href=%MML%qc_lang1.html#K22>k22_qc_lang1</a>,'still_not-bound_in',_).
constr_name(<a href=%MML%qc_lang1.html#K23>k23_qc_lang1</a>,'{..}__22',_).
constr_name(<a href=%MML%qc_lang1.html#K24>k24_qc_lang1</a>,'still_not-bound_in__2',_).
constr_name(<a href=%MML%qc_lang1.html#V6>v6_qc_lang1</a>,closed,_).
constr_name(<a href=%MML%qc_lang2.html#K1>k1_qc_lang2</a>,'FALSUM',_).
constr_name(<a href=%MML%qc_lang2.html#K2>k2_qc_lang2</a>,'=>__2',_).
constr_name(<a href=%MML%qc_lang2.html#K3>k3_qc_lang2</a>,''or'__2',_).
constr_name(<a href=%MML%qc_lang2.html#K4>k4_qc_lang2</a>,'<=>__2',_).
constr_name(<a href=%MML%qc_lang2.html#K5>k5_qc_lang2</a>,'Ex__4',_).
constr_name(<a href=%MML%qc_lang2.html#K6>k6_qc_lang2</a>,'All__5',_).
constr_name(<a href=%MML%qc_lang2.html#K7>k7_qc_lang2</a>,'Ex__5',_).
constr_name(<a href=%MML%qc_lang2.html#K8>k8_qc_lang2</a>,'All__6',_).
constr_name(<a href=%MML%qc_lang2.html#K9>k9_qc_lang2</a>,'Ex__6',_).
constr_name(<a href=%MML%qc_lang2.html#V1>v1_qc_lang2</a>,disjunctive__2,_).
constr_name(<a href=%MML%qc_lang2.html#V2>v2_qc_lang2</a>,conditional__2,_).
constr_name(<a href=%MML%qc_lang2.html#V3>v3_qc_lang2</a>,biconditional__2,_).
constr_name(<a href=%MML%qc_lang2.html#V4>v4_qc_lang2</a>,existential__2,_).
constr_name(<a href=%MML%qc_lang2.html#K10>k10_qc_lang2</a>,the_left_disjunct_of,_).
constr_name(<a href=%MML%qc_lang2.html#K11>k11_qc_lang2</a>,the_right_disjunct_of,_).
constr_name(<a href=%MML%qc_lang2.html#K12>k12_qc_lang2</a>,the_antecedent_of__2,_).
constr_name(<a href=%MML%qc_lang2.html#K13>k13_qc_lang2</a>,the_left_side_of__2,_).
constr_name(<a href=%MML%qc_lang2.html#K14>k14_qc_lang2</a>,the_right_side_of__2,_).
constr_name(<a href=%MML%qc_lang2.html#R1>r1_qc_lang2</a>,is_immediate_constituent_of__2,_).
constr_name(<a href=%MML%qc_lang2.html#R2>r2_qc_lang2</a>,is_subformula_of__2,_).
constr_name(<a href=%MML%qc_lang2.html#R3>r3_qc_lang2</a>,is_proper_subformula_of__2,_).
constr_name(<a href=%MML%qc_lang2.html#K15>k15_qc_lang2</a>,'Subformulae__2',_).
constr_name(<a href=%MML%qc_lang3.html#K1>k1_qc_lang3</a>,variables_in__3,_).
constr_name(<a href=%MML%qc_lang3.html#K2>k2_qc_lang3</a>,'x.__2',_).
constr_name(<a href=%MML%qc_lang3.html#K3>k3_qc_lang3</a>,'a.',_).
constr_name(<a href=%MML%qc_lang3.html#K4>k4_qc_lang3</a>,'Vars',_).
constr_name(<a href=%MML%qc_lang3.html#K5>k5_qc_lang3</a>,'Free__3',_).
constr_name(<a href=%MML%qc_lang3.html#K6>k6_qc_lang3</a>,'Fixed',_).
constr_name(<a href=%MML%cqc_lang.html#K1>k1_cqc_lang</a>,'IFEQ',_).
constr_name(<a href=%MML%cqc_lang.html#K2>k2_cqc_lang</a>,'IFEQ__2',_).
constr_name(<a href=%MML%cqc_lang.html#K3>k3_cqc_lang</a>,'.-->',_).
constr_name(<a href=%MML%cqc_lang.html#K4>k4_cqc_lang</a>,'Subst',_).
constr_name(<a href=%MML%cqc_lang.html#K5>k5_cqc_lang</a>,'Subst__2',_).
constr_name(<a href=%MML%cqc_lang.html#K6>k6_cqc_lang</a>,'.-->__2',_).
constr_name(<a href=%MML%cqc_lang.html#K7>k7_cqc_lang</a>,'CQC-WFF',_).
constr_name(<a href=%MML%cqc_lang.html#V1>v1_cqc_lang</a>,'CQC-variable_list-like',_).
constr_name(<a href=%MML%cqc_lang.html#K8>k8_cqc_lang</a>,'!__3',_).
constr_name(<a href=%MML%cqc_lang.html#K9>k9_cqc_lang</a>,'VERUM__2',_).
constr_name(<a href=%MML%cqc_lang.html#K10>k10_cqc_lang</a>,''not'__3',_).
constr_name(<a href=%MML%cqc_lang.html#K11>k11_cqc_lang</a>,''&'__3',_).
constr_name(<a href=%MML%cqc_lang.html#K12>k12_cqc_lang</a>,'=>__3',_).
constr_name(<a href=%MML%cqc_lang.html#K13>k13_cqc_lang</a>,''or'__3',_).
constr_name(<a href=%MML%cqc_lang.html#K14>k14_cqc_lang</a>,'<=>__3',_).
constr_name(<a href=%MML%cqc_lang.html#K15>k15_cqc_lang</a>,'All__7',_).
constr_name(<a href=%MML%cqc_lang.html#K16>k16_cqc_lang</a>,'Ex__7',_).
constr_name(<a href=%MML%cqc_lang.html#K17>k17_cqc_lang</a>,'.__8',_).
constr_name(<a href=%MML%pboole.html#M1>m1_pboole</a>,'ManySortedSet',_).
constr_name(<a href=%MML%pboole.html#R1>r1_pboole</a>,in,_).
constr_name(<a href=%MML%pboole.html#R2>r2_pboole</a>,'c=__3',_).
constr_name(<a href=%MML%pboole.html#R3>r3_pboole</a>,in__2,_).
constr_name(<a href=%MML%pboole.html#R4>r4_pboole</a>,overlaps,_).
constr_name(<a href=%MML%pboole.html#R5>r5_pboole</a>,misses__3,_).
constr_name(<a href=%MML%pboole.html#K1>k1_pboole</a>,'[0]',_).
constr_name(<a href=%MML%pboole.html#K2>k2_pboole</a>,'\\/__9',_).
constr_name(<a href=%MML%pboole.html#K3>k3_pboole</a>,'/\\__8',_).
constr_name(<a href=%MML%pboole.html#K4>k4_pboole</a>,'\\__7',_).
constr_name(<a href=%MML%pboole.html#K5>k5_pboole</a>,'\\+\\__5',_).
constr_name(<a href=%MML%pboole.html#R6>r6_pboole</a>,'=',_).
constr_name(<a href=%MML%pboole.html#R7>r7_pboole</a>,'[=',_).
constr_name(<a href=%MML%pboole.html#V1>v1_pboole</a>,'empty-yielding__2',_).
constr_name(<a href=%MML%pboole.html#V2>v2_pboole</a>,'non-empty__2',_).
constr_name(<a href=%MML%pboole.html#M2>m2_pboole</a>,'Element__6',_).
constr_name(<a href=%MML%pboole.html#M3>m3_pboole</a>,'ManySortedFunction',_).
constr_name(<a href=%MML%pboole.html#K6>k6_pboole</a>,'#',_).
constr_name(<a href=%MML%pboole.html#K7>k7_pboole</a>,'*__20',_).
constr_name(<a href=%MML%pboole.html#K8>k8_pboole</a>,'*__21',_).
constr_name(<a href=%MML%pboole.html#K9>k9_pboole</a>,'*-->',_).
constr_name(<a href=%MML%pboole.html#K10>k10_pboole</a>,'-->__4',_).
constr_name(<a href=%MML%pboole.html#K11>k11_pboole</a>,'[|..|]',_).
constr_name(<a href=%MML%pboole.html#K12>k12_pboole</a>,'MSFuncs',_).
constr_name(<a href=%MML%pboole.html#M4>m4_pboole</a>,'ManySortedSubset',_).
constr_name(<a href=%MML%pboole.html#K13>k13_pboole</a>,'**',_).
constr_name(<a href=%MML%pboole.html#K14>k14_pboole</a>,'.:.:',_).
constr_name(<a href=%MML%seq_1.html#V1>v1_seq_1</a>,'real-yielding',_).
constr_name(<a href=%MML%seq_1.html#K1>k1_seq_1</a>,'.__9',_).
constr_name(<a href=%MML%seq_1.html#K2>k2_seq_1</a>,'.__10',_).
constr_name(<a href=%MML%seq_1.html#K3>k3_seq_1</a>,'+__14',_).
constr_name(<a href=%MML%seq_1.html#K4>k4_seq_1</a>,'-__17',_).
constr_name(<a href=%MML%seq_1.html#K5>k5_seq_1</a>,'(#)',_).
constr_name(<a href=%MML%seq_1.html#K6>k6_seq_1</a>,'+__15',_).
constr_name(<a href=%MML%seq_1.html#K7>k7_seq_1</a>,'-__18',_).
constr_name(<a href=%MML%seq_1.html#K8>k8_seq_1</a>,'(#)__2',_).
constr_name(<a href=%MML%seq_1.html#K9>k9_seq_1</a>,'+__16',_).
constr_name(<a href=%MML%seq_1.html#K10>k10_seq_1</a>,'-__19',_).
constr_name(<a href=%MML%seq_1.html#K11>k11_seq_1</a>,'(#)__3',_).
constr_name(<a href=%MML%seq_1.html#K12>k12_seq_1</a>,'(#)__4',_).
constr_name(<a href=%MML%seq_1.html#K13>k13_seq_1</a>,'(#)__5',_).
constr_name(<a href=%MML%seq_1.html#K14>k14_seq_1</a>,'(#)__6',_).
constr_name(<a href=%MML%seq_1.html#K15>k15_seq_1</a>,'-__20',_).
constr_name(<a href=%MML%seq_1.html#K16>k16_seq_1</a>,'-__21',_).
constr_name(<a href=%MML%seq_1.html#K17>k17_seq_1</a>,'-__22',_).
constr_name(<a href=%MML%seq_1.html#K18>k18_seq_1</a>,'"__13',_).
constr_name(<a href=%MML%seq_1.html#K19>k19_seq_1</a>,'/"',_).
constr_name(<a href=%MML%seq_1.html#K20>k20_seq_1</a>,abs__2,_).
constr_name(<a href=%MML%seq_1.html#K21>k21_seq_1</a>,abs__3,_).
constr_name(<a href=%MML%seq_1.html#K22>k22_seq_1</a>,abs__4,_).
constr_name(<a href=%MML%seq_2.html#V1>v1_seq_2</a>,bounded_above,_).
constr_name(<a href=%MML%seq_2.html#V2>v2_seq_2</a>,bounded_below,_).
constr_name(<a href=%MML%seq_2.html#V3>v3_seq_2</a>,bounded,_).
constr_name(<a href=%MML%seq_2.html#V4>v4_seq_2</a>,convergent,_).
constr_name(<a href=%MML%seq_2.html#K1>k1_seq_2</a>,lim__3,_).
constr_name(<a href=%MML%seq_2.html#K2>k2_seq_2</a>,lim__4,_).
constr_name(<a href=%MML%prob_1.html#V1>v1_prob_1</a>,'compl-closed',_).
constr_name(<a href=%MML%prob_1.html#K1>k1_prob_1</a>,'.__11',_).
constr_name(<a href=%MML%prob_1.html#K2>k2_prob_1</a>,'Union__3',_).
constr_name(<a href=%MML%prob_1.html#K3>k3_prob_1</a>,'Complement',_).
constr_name(<a href=%MML%prob_1.html#K4>k4_prob_1</a>,'Intersection',_).
constr_name(<a href=%MML%prob_1.html#V2>v2_prob_1</a>,'non-increasing',_).
constr_name(<a href=%MML%prob_1.html#V3>v3_prob_1</a>,'non-decreasing',_).
constr_name(<a href=%MML%prob_1.html#M1>m1_prob_1</a>,'SigmaField',_).
constr_name(<a href=%MML%prob_1.html#M2>m2_prob_1</a>,'SetSequence',_).
constr_name(<a href=%MML%prob_1.html#M3>m3_prob_1</a>,'Event',_).
constr_name(<a href=%MML%prob_1.html#K5>k5_prob_1</a>,'[#]__2',_).
constr_name(<a href=%MML%prob_1.html#K6>k6_prob_1</a>,'/\\__9',_).
constr_name(<a href=%MML%prob_1.html#K7>k7_prob_1</a>,'\\/__10',_).
constr_name(<a href=%MML%prob_1.html#K8>k8_prob_1</a>,'\\__8',_).
constr_name(<a href=%MML%prob_1.html#K9>k9_prob_1</a>,'*__22',_).
constr_name(<a href=%MML%prob_1.html#K10>k10_prob_1</a>,'.__12',_).
constr_name(<a href=%MML%prob_1.html#M4>m4_prob_1</a>,'Probability',_).
constr_name(<a href=%MML%prob_1.html#K11>k11_prob_1</a>,sigma,_).
constr_name(<a href=%MML%prob_1.html#K12>k12_prob_1</a>,halfline,_).
constr_name(<a href=%MML%prob_1.html#K13>k13_prob_1</a>,'Family_of_halflines',_).
constr_name(<a href=%MML%prob_1.html#K14>k14_prob_1</a>,'Borel_Sets',_).
constr_name(<a href=%MML%seqm_3.html#V1>v1_seqm_3</a>,increasing__2,_).
constr_name(<a href=%MML%seqm_3.html#V2>v2_seqm_3</a>,decreasing,_).
constr_name(<a href=%MML%seqm_3.html#V3>v3_seqm_3</a>,'non-decreasing__2',_).
constr_name(<a href=%MML%seqm_3.html#V4>v4_seqm_3</a>,'non-increasing__2',_).
constr_name(<a href=%MML%seqm_3.html#V5>v5_seqm_3</a>,constant,_).
constr_name(<a href=%MML%seqm_3.html#V6>v6_seqm_3</a>,monotone,_).
constr_name(<a href=%MML%seqm_3.html#V7>v7_seqm_3</a>,'natural-yielding',_).
constr_name(<a href=%MML%seqm_3.html#K1>k1_seqm_3</a>,'^\\',_).
constr_name(<a href=%MML%seqm_3.html#K2>k2_seqm_3</a>,'.__13',_).
constr_name(<a href=%MML%seqm_3.html#K3>k3_seqm_3</a>,'*__23',_).
constr_name(<a href=%MML%seqm_3.html#K4>k4_seqm_3</a>,'*__24',_).
constr_name(<a href=%MML%seqm_3.html#M1>m1_seqm_3</a>,subsequence,_).
constr_name(<a href=%MML%seq_4.html#V1>v1_seq_4</a>,bounded_above__2,_).
constr_name(<a href=%MML%seq_4.html#V2>v2_seq_4</a>,bounded_below__2,_).
constr_name(<a href=%MML%seq_4.html#V3>v3_seq_4</a>,bounded__2,_).
constr_name(<a href=%MML%seq_4.html#K1>k1_seq_4</a>,'{..}__23',_).
constr_name(<a href=%MML%seq_4.html#K2>k2_seq_4</a>,upper_bound,_).
constr_name(<a href=%MML%seq_4.html#K3>k3_seq_4</a>,lower_bound,_).
constr_name(<a href=%MML%seq_4.html#K4>k4_seq_4</a>,upper_bound__2,_).
constr_name(<a href=%MML%seq_4.html#K5>k5_seq_4</a>,lower_bound__2,_).
constr_name(<a href=%MML%margrel1.html#K1>k1_margrel1</a>,'-->__5',_).
constr_name(<a href=%MML%margrel1.html#V1>v1_margrel1</a>,'relation-like',_).
constr_name(<a href=%MML%margrel1.html#K2>k2_margrel1</a>,the_arity_of__2,_).
constr_name(<a href=%MML%margrel1.html#M1>m1_margrel1</a>,relation_length,_).
constr_name(<a href=%MML%margrel1.html#M2>m2_margrel1</a>,relation,_).
constr_name(<a href=%MML%margrel1.html#M3>m3_margrel1</a>,relation__2,_).
constr_name(<a href=%MML%margrel1.html#K3>k3_margrel1</a>,relations_on,_).
constr_name(<a href=%MML%margrel1.html#R1>r1_margrel1</a>,'=__2',_).
constr_name(<a href=%MML%margrel1.html#K4>k4_margrel1</a>,empty_rel,_).
constr_name(<a href=%MML%margrel1.html#K5>k5_margrel1</a>,the_arity_of__3,_).
constr_name(<a href=%MML%margrel1.html#K6>k6_margrel1</a>,'BOOLEAN',_).
constr_name(<a href=%MML%margrel1.html#K7>k7_margrel1</a>,'FALSE',_).
constr_name(<a href=%MML%margrel1.html#K8>k8_margrel1</a>,'TRUE',_).
constr_name(<a href=%MML%margrel1.html#V2>v2_margrel1</a>,boolean,_).
constr_name(<a href=%MML%margrel1.html#K9>k9_margrel1</a>,''not'__4',_).
constr_name(<a href=%MML%margrel1.html#K10>k10_margrel1</a>,''&'__4',_).
constr_name(<a href=%MML%margrel1.html#K11>k11_margrel1</a>,''not'__5',_).
constr_name(<a href=%MML%margrel1.html#K12>k12_margrel1</a>,''&'__5',_).
constr_name(<a href=%MML%margrel1.html#K13>k13_margrel1</a>,'ALL',_).
constr_name(<a href=%MML%margrel1.html#K14>k14_margrel1</a>,'ALL__2',_).
constr_name(<a href=%MML%prob_2.html#K1>k1_prob_2</a>,'.__14',_).
constr_name(<a href=%MML%prob_2.html#K2>k2_prob_2</a>,'@Intersection',_).
constr_name(<a href=%MML%prob_2.html#K3>k3_prob_2</a>,'@Complement',_).
constr_name(<a href=%MML%prob_2.html#V1>v1_prob_2</a>,disjoint_valued,_).
constr_name(<a href=%MML%prob_2.html#V2>v2_prob_2</a>,disjoint_valued__2,_).
constr_name(<a href=%MML%prob_2.html#R1>r1_prob_2</a>,are_independent_respect_to,_).
constr_name(<a href=%MML%prob_2.html#R2>r2_prob_2</a>,are_independent_respect_to__2,_).
constr_name(<a href=%MML%prob_2.html#K4>k4_prob_2</a>,'.|.',_).
constr_name(<a href=%MML%rcomp_1.html#K1>k1_rcomp_1</a>,'[....]',_).
constr_name(<a href=%MML%rcomp_1.html#K2>k2_rcomp_1</a>,']....[',_).
constr_name(<a href=%MML%rcomp_1.html#V1>v1_rcomp_1</a>,compact,_).
constr_name(<a href=%MML%rcomp_1.html#V2>v2_rcomp_1</a>,closed__2,_).
constr_name(<a href=%MML%rcomp_1.html#V3>v3_rcomp_1</a>,open,_).
constr_name(<a href=%MML%rcomp_1.html#M1>m1_rcomp_1</a>,'Neighbourhood',_).
constr_name(<a href=%MML%multop_1.html#K1>k1_multop_1</a>,'.__15',_).
constr_name(<a href=%MML%multop_1.html#K2>k2_multop_1</a>,'.__16',_).
constr_name(<a href=%MML%multop_1.html#K3>k3_multop_1</a>,'.__17',_).
constr_name(<a href=%MML%multop_1.html#K4>k4_multop_1</a>,'.__18',_).
constr_name(<a href=%MML%mcart_2.html#K1>k1_mcart_2</a>,'[..]__8',_).
constr_name(<a href=%MML%mcart_2.html#K2>k2_mcart_2</a>,'[:..:]__10',_).
constr_name(<a href=%MML%mcart_2.html#K3>k3_mcart_2</a>,'`1__5',_).
constr_name(<a href=%MML%mcart_2.html#K4>k4_mcart_2</a>,'`2__5',_).
constr_name(<a href=%MML%mcart_2.html#K5>k5_mcart_2</a>,'`3__3',_).
constr_name(<a href=%MML%mcart_2.html#K6>k6_mcart_2</a>,'`4__2',_).
constr_name(<a href=%MML%mcart_2.html#K7>k7_mcart_2</a>,'`5',_).
constr_name(<a href=%MML%mcart_2.html#K8>k8_mcart_2</a>,'[:..:]__11',_).
constr_name(<a href=%MML%mcart_3.html#K1>k1_mcart_3</a>,'[..]__9',_).
constr_name(<a href=%MML%mcart_3.html#K2>k2_mcart_3</a>,'[:..:]__12',_).
constr_name(<a href=%MML%mcart_3.html#K3>k3_mcart_3</a>,'`1__6',_).
constr_name(<a href=%MML%mcart_3.html#K4>k4_mcart_3</a>,'`2__6',_).
constr_name(<a href=%MML%mcart_3.html#K5>k5_mcart_3</a>,'`3__4',_).
constr_name(<a href=%MML%mcart_3.html#K6>k6_mcart_3</a>,'`4__3',_).
constr_name(<a href=%MML%mcart_3.html#K7>k7_mcart_3</a>,'`5__2',_).
constr_name(<a href=%MML%mcart_3.html#K8>k8_mcart_3</a>,'`6',_).
constr_name(<a href=%MML%mcart_4.html#K1>k1_mcart_4</a>,'[..]__10',_).
constr_name(<a href=%MML%mcart_4.html#K2>k2_mcart_4</a>,'[:..:]__13',_).
constr_name(<a href=%MML%mcart_4.html#K3>k3_mcart_4</a>,'`1__7',_).
constr_name(<a href=%MML%mcart_4.html#K4>k4_mcart_4</a>,'`2__7',_).
constr_name(<a href=%MML%mcart_4.html#K5>k5_mcart_4</a>,'`3__5',_).
constr_name(<a href=%MML%mcart_4.html#K6>k6_mcart_4</a>,'`4__4',_).
constr_name(<a href=%MML%mcart_4.html#K7>k7_mcart_4</a>,'`5__3',_).
constr_name(<a href=%MML%mcart_4.html#K8>k8_mcart_4</a>,'`6__2',_).
constr_name(<a href=%MML%mcart_4.html#K9>k9_mcart_4</a>,'`7',_).
constr_name(<a href=%MML%mcart_5.html#K1>k1_mcart_5</a>,'[..]__11',_).
constr_name(<a href=%MML%mcart_5.html#K2>k2_mcart_5</a>,'[:..:]__14',_).
constr_name(<a href=%MML%mcart_5.html#K3>k3_mcart_5</a>,'`1__8',_).
constr_name(<a href=%MML%mcart_5.html#K4>k4_mcart_5</a>,'`2__8',_).
constr_name(<a href=%MML%mcart_5.html#K5>k5_mcart_5</a>,'`3__6',_).
constr_name(<a href=%MML%mcart_5.html#K6>k6_mcart_5</a>,'`4__5',_).
constr_name(<a href=%MML%mcart_5.html#K7>k7_mcart_5</a>,'`5__4',_).
constr_name(<a href=%MML%mcart_5.html#K8>k8_mcart_5</a>,'`6__3',_).
constr_name(<a href=%MML%mcart_5.html#K9>k9_mcart_5</a>,'`7__2',_).
constr_name(<a href=%MML%mcart_5.html#K10>k10_mcart_5</a>,'`8',_).
constr_name(<a href=%MML%mcart_6.html#K1>k1_mcart_6</a>,'[..]__12',_).
constr_name(<a href=%MML%mcart_6.html#K2>k2_mcart_6</a>,'[:..:]__15',_).
constr_name(<a href=%MML%mcart_6.html#K3>k3_mcart_6</a>,'`1__9',_).
constr_name(<a href=%MML%mcart_6.html#K4>k4_mcart_6</a>,'`2__9',_).
constr_name(<a href=%MML%mcart_6.html#K5>k5_mcart_6</a>,'`3__7',_).
constr_name(<a href=%MML%mcart_6.html#K6>k6_mcart_6</a>,'`4__6',_).
constr_name(<a href=%MML%mcart_6.html#K7>k7_mcart_6</a>,'`5__5',_).
constr_name(<a href=%MML%mcart_6.html#K8>k8_mcart_6</a>,'`6__4',_).
constr_name(<a href=%MML%mcart_6.html#K9>k9_mcart_6</a>,'`7__3',_).
constr_name(<a href=%MML%mcart_6.html#K10>k10_mcart_6</a>,'`8__2',_).
constr_name(<a href=%MML%mcart_6.html#K11>k11_mcart_6</a>,'`9',_).
constr_name(<a href=%MML%finseq_4.html#R1>r1_finseq_4</a>,'is_one-to-one_at',_).
constr_name(<a href=%MML%finseq_4.html#R2>r2_finseq_4</a>,just_once_values,_).
constr_name(<a href=%MML%finseq_4.html#K1>k1_finseq_4</a>,'<-',_).
constr_name(<a href=%MML%finseq_4.html#K2>k2_finseq_4</a>,'<*..*>__7',_).
constr_name(<a href=%MML%finseq_4.html#K3>k3_finseq_4</a>,'<*..*>__8',_).
constr_name(<a href=%MML%finseq_4.html#K4>k4_finseq_4</a>,'/.',_).
constr_name(<a href=%MML%finseq_4.html#K5>k5_finseq_4</a>,'..',_).
constr_name(<a href=%MML%finseq_4.html#K6>k6_finseq_4</a>,'-|',_).
constr_name(<a href=%MML%finseq_4.html#K7>k7_finseq_4</a>,'|--',_).
constr_name(<a href=%MML%finseqop.html#K1>k1_finseqop</a>,'.:__9',_).
constr_name(<a href=%MML%finseqop.html#K2>k2_finseqop</a>,'[:]__3',_).
constr_name(<a href=%MML%finseqop.html#K3>k3_finseqop</a>,'[;]__3',_).
constr_name(<a href=%MML%finseqop.html#K4>k4_finseqop</a>,'|->__2',_).
constr_name(<a href=%MML%finseqop.html#K5>k5_finseqop</a>,'*__25',_).
constr_name(<a href=%MML%finseqop.html#R1>r1_finseqop</a>,is_an_inverseOp_wrt,_).
constr_name(<a href=%MML%finseqop.html#V1>v1_finseqop</a>,having_an_inverseOp,_).
constr_name(<a href=%MML%finseqop.html#K6>k6_finseqop</a>,the_inverseOp_wrt,_).
constr_name(<a href=%MML%finseqop.html#K7>k7_finseqop</a>,'*__26',_).
constr_name(<a href=%MML%finseqop.html#K8>k8_finseqop</a>,'*__27',_).
constr_name(<a href=%MML%finsop_1.html#K1>k1_finsop_1</a>,'|->__3',_).
constr_name(<a href=%MML%finsop_1.html#K2>k2_finsop_1</a>,'"**"',_).
constr_name(<a href=%MML%finsop_1.html#K3>k3_finsop_1</a>,'-->__6',_).
constr_name(<a href=%MML%finsop_1.html#K4>k4_finsop_1</a>,'+*__2',_).
constr_name(<a href=%MML%finsop_1.html#K5>k5_finsop_1</a>,dom__4,_).
constr_name(<a href=%MML%setwop_2.html#K1>k1_setwop_2</a>,'[#]__3',_).
constr_name(<a href=%MML%setwop_2.html#K2>k2_setwop_2</a>,'Seg__3',_).
constr_name(<a href=%MML%setwop_2.html#K3>k3_setwop_2</a>,dom__5,_).
constr_name(<a href=%MML%rvsum_1.html#K1>k1_rvsum_1</a>,sqrreal,_).
constr_name(<a href=%MML%rvsum_1.html#K2>k2_rvsum_1</a>,multreal__2,_).
constr_name(<a href=%MML%rvsum_1.html#K3>k3_rvsum_1</a>,'+__17',_).
constr_name(<a href=%MML%rvsum_1.html#K4>k4_rvsum_1</a>,'+__18',_).
constr_name(<a href=%MML%rvsum_1.html#K5>k5_rvsum_1</a>,'-__23',_).
constr_name(<a href=%MML%rvsum_1.html#K6>k6_rvsum_1</a>,'-__24',_).
constr_name(<a href=%MML%rvsum_1.html#K7>k7_rvsum_1</a>,'-__25',_).
constr_name(<a href=%MML%rvsum_1.html#K8>k8_rvsum_1</a>,'-__26',_).
constr_name(<a href=%MML%rvsum_1.html#K9>k9_rvsum_1</a>,'*__28',_).
constr_name(<a href=%MML%rvsum_1.html#K10>k10_rvsum_1</a>,'*__29',_).
constr_name(<a href=%MML%rvsum_1.html#K11>k11_rvsum_1</a>,sqr,_).
constr_name(<a href=%MML%rvsum_1.html#K12>k12_rvsum_1</a>,sqr__2,_).
constr_name(<a href=%MML%rvsum_1.html#K13>k13_rvsum_1</a>,mlt,_).
constr_name(<a href=%MML%rvsum_1.html#K14>k14_rvsum_1</a>,mlt__2,_).
constr_name(<a href=%MML%rvsum_1.html#K15>k15_rvsum_1</a>,'Sum__2',_).
constr_name(<a href=%MML%rvsum_1.html#K16>k16_rvsum_1</a>,'Product__2',_).
constr_name(<a href=%MML%cqc_the1.html#V1>v1_cqc_the1</a>,being_a_theory,_).
constr_name(<a href=%MML%cqc_the1.html#K1>k1_cqc_the1</a>,'Cn',_).
constr_name(<a href=%MML%cqc_the1.html#K2>k2_cqc_the1</a>,'Proof_Step_Kinds',_).
constr_name(<a href=%MML%cqc_the1.html#R1>r1_cqc_the1</a>,is_a_correct_step_wrt,_).
constr_name(<a href=%MML%cqc_the1.html#R2>r2_cqc_the1</a>,is_a_proof_wrt,_).
constr_name(<a href=%MML%cqc_the1.html#K3>k3_cqc_the1</a>,'Effect',_).
constr_name(<a href=%MML%cqc_the1.html#K4>k4_cqc_the1</a>,'TAUT',_).
constr_name(<a href=%MML%cqc_the1.html#R3>r3_cqc_the1</a>,'|-',_).
constr_name(<a href=%MML%cqc_the1.html#V2>v2_cqc_the1</a>,valid,_).
constr_name(<a href=%MML%partfun2.html#K1>k1_partfun2</a>,id__3,_).
constr_name(<a href=%MML%partfun2.html#K2>k2_partfun2</a>,'"__14',_).
constr_name(<a href=%MML%partfun2.html#K3>k3_partfun2</a>,'|__9',_).
constr_name(<a href=%MML%partfun2.html#K4>k4_partfun2</a>,'-->__7',_).
constr_name(<a href=%MML%partfun2.html#R1>r1_partfun2</a>,is_constant_on,_).
constr_name(<a href=%MML%rfunct_1.html#K1>k1_rfunct_1</a>,'/__11',_).
constr_name(<a href=%MML%rfunct_1.html#K2>k2_rfunct_1</a>,'/__12',_).
constr_name(<a href=%MML%rfunct_1.html#K3>k3_rfunct_1</a>,'^__4',_).
constr_name(<a href=%MML%rfunct_1.html#K4>k4_rfunct_1</a>,'^__5',_).
constr_name(<a href=%MML%rfunct_1.html#K5>k5_rfunct_1</a>,chi__3,_).
constr_name(<a href=%MML%rfunct_1.html#R1>r1_rfunct_1</a>,is_bounded_above_on,_).
constr_name(<a href=%MML%rfunct_1.html#R2>r2_rfunct_1</a>,is_bounded_below_on,_).
constr_name(<a href=%MML%rfunct_1.html#R3>r3_rfunct_1</a>,is_bounded_on,_).
constr_name(<a href=%MML%valuat_1.html#K1>k1_valuat_1</a>,'Valuations_in',_).
constr_name(<a href=%MML%valuat_1.html#K2>k2_valuat_1</a>,'Valuations_in__2',_).
constr_name(<a href=%MML%valuat_1.html#V1>v1_valuat_1</a>,'boolean-valued',_).
constr_name(<a href=%MML%valuat_1.html#K3>k3_valuat_1</a>,''not'__6',_).
constr_name(<a href=%MML%valuat_1.html#K4>k4_valuat_1</a>,''&'__6',_).
constr_name(<a href=%MML%valuat_1.html#K5>k5_valuat_1</a>,''not'__7',_).
constr_name(<a href=%MML%valuat_1.html#K6>k6_valuat_1</a>,''&'__7',_).
constr_name(<a href=%MML%valuat_1.html#K7>k7_valuat_1</a>,'FOR_ALL',_).
constr_name(<a href=%MML%valuat_1.html#K8>k8_valuat_1</a>,'*'__6',_).
constr_name(<a href=%MML%valuat_1.html#K9>k9_valuat_1</a>,''in'__2',_).
constr_name(<a href=%MML%valuat_1.html#K10>k10_valuat_1</a>,'.__19',_).
constr_name(<a href=%MML%valuat_1.html#M1>m1_valuat_1</a>,interpretation,_).
constr_name(<a href=%MML%valuat_1.html#K11>k11_valuat_1</a>,'.__20',_).
constr_name(<a href=%MML%valuat_1.html#K12>k12_valuat_1</a>,'Valid',_).
constr_name(<a href=%MML%valuat_1.html#R1>r1_valuat_1</a>,'|=__4',_).
constr_name(<a href=%MML%valuat_1.html#R2>r2_valuat_1</a>,'|=__5',_).
constr_name(<a href=%MML%rfunct_2.html#K1>k1_rfunct_2</a>,rng__4,_).
constr_name(<a href=%MML%rfunct_2.html#K2>k2_rfunct_2</a>,'*__30',_).
constr_name(<a href=%MML%rfunct_2.html#R1>r1_rfunct_2</a>,is_increasing_on,_).
constr_name(<a href=%MML%rfunct_2.html#R2>r2_rfunct_2</a>,is_decreasing_on,_).
constr_name(<a href=%MML%rfunct_2.html#R3>r3_rfunct_2</a>,is_non_decreasing_on,_).
constr_name(<a href=%MML%rfunct_2.html#R4>r4_rfunct_2</a>,is_non_increasing_on,_).
constr_name(<a href=%MML%rfunct_2.html#R5>r5_rfunct_2</a>,is_monotone_on,_).
constr_name(<a href=%MML%fcont_1.html#R1>r1_fcont_1</a>,is_continuous_in,_).
constr_name(<a href=%MML%fcont_1.html#R2>r2_fcont_1</a>,is_continuous_on,_).
constr_name(<a href=%MML%fcont_1.html#R3>r3_fcont_1</a>,is_Lipschitzian_on,_).
constr_name(<a href=%MML%fcont_2.html#R1>r1_fcont_2</a>,is_uniformly_continuous_on,_).
constr_name(<a href=%MML%fdiff_1.html#V1>v1_fdiff_1</a>,convergent_to_0,_).
constr_name(<a href=%MML%fdiff_1.html#V2>v2_fdiff_1</a>,'REST-like',_).
constr_name(<a href=%MML%fdiff_1.html#V3>v3_fdiff_1</a>,linear,_).
constr_name(<a href=%MML%fdiff_1.html#R1>r1_fdiff_1</a>,is_differentiable_in,_).
constr_name(<a href=%MML%fdiff_1.html#K1>k1_fdiff_1</a>,diff,_).
constr_name(<a href=%MML%fdiff_1.html#R2>r2_fdiff_1</a>,is_differentiable_on,_).
constr_name(<a href=%MML%fdiff_1.html#K2>k2_fdiff_1</a>,'`|',_).
constr_name(<a href=%MML%limfunc1.html#K1>k1_limfunc1</a>,max__3,_).
constr_name(<a href=%MML%limfunc1.html#K2>k2_limfunc1</a>,left_closed_halfline,_).
constr_name(<a href=%MML%limfunc1.html#K3>k3_limfunc1</a>,right_closed_halfline,_).
constr_name(<a href=%MML%limfunc1.html#K4>k4_limfunc1</a>,right_open_halfline,_).