-
Notifications
You must be signed in to change notification settings - Fork 47
/
unionRoundMask.scad
179 lines (163 loc) · 5.6 KB
/
unionRoundMask.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
////////////////////////////////////////////////////////
/*
unionRound() 1.0 Module by Torleif Ceder - TLC123 late summer 2021
Pretty fast Union with radius, But limited to a subset of cases
Usage
unionRound( radius , detail )
{
YourObject1();
YourObject2();
}
unionRoundMask (r, detail , epsilon ,showMask )
{
YourObject1();
YourObject2();
YourMask();
YourMask();
// ...
// ...
// ...
}
limitations:
0. Only really fast when boolean operands are convex,
Minkowski is fast in that case.
1. Boolean operands may be concave but can only touch
in a single convex area
2. Radius is of elliptic type and is only approximate r
were operand intersect at perpendicular angle.
*/
////////////////////////////////////////////////////////
// Demo code
demo= false;
if (demo)
unionRoundMask( r=1.5 , detail= 5 , q=70, includeOperands = true) {
cube([10,10,2],true);
rotate([20,-10,0])cylinder(5,1,1,$fn=12);
translate([0,0,1.5])cube([1.5,10,3],center=true); //mask
rotate(90)
translate([0,0,1.5])cube([3,10,3],center=true); //mask
}
// end of demo code
//
module unionRoundMask(r=1, detail = 5,q=70, epsilon = 1e-6, showMask = false, includeOperands = true) {
//automask if none
if($children <=2){
unionRoundMask(r,detail,q,epsilon,showMask, includeOperands)
{
children(0);
children(1);
clad(max(r),q) intersection(){
children(0);
children(1);
}
}
}
else {
union() {
if(includeOperands){
children(0);
children(1);
}
if (showMask && $children > 2) %
for (i = [2: max(2, $children - 1)]) children(i);
if ($children > 2)
for (i = [2: max(2, $children - 1)]) {
intersection() {
children(i);
unionRound(r, detail,q, epsilon,includeOperands) {
intersection() {
children(0);
children(i); // mask
}
intersection() {
children(1);
children(i); // mask
}
}
}
}
}
}
}
module unionRound(r=1, detail = 5,q=70, epsilon = 1e-6, includeOperands=true) {
if(includeOperands){
children(0);
children(1);
}
step = 90 / detail;
rx=is_list(r)?r[1]:r;
ry=is_list(r)?r[0]:r;
union()for (i = [0: detail-1]) {
{
x = rx - sin(i * step ) * rx;
y = ry - cos(i * step ) * ry;
xi = rx - sin((i * step + step) ) * rx;
yi = ry - cos((i * step + step) ) * ry;
// color(rands(0, 1, 3, i))
hull() {
intersection() {
// shell(epsilon)
clad(x,q) children(0);
// shell(epsilon)
clad(y,q) children(1);
}
intersection() {
// shell(epsilon)
clad(xi,q) children(0);
// shell(epsilon)
clad(yi,q) children(1);
}
}
}
}
}
// prototype module slow maybe on concave feature
module intersectionRound(r, q=70, epsilon = 1e-6,showOperands = true) {
%if (showOperands){children(0);
children(1);}
clad(r,q) inset(r,q)
hull()intersection() {
children(0);
children(1);
}
}
// unionRound helper expand by r
module clad(r,q=70) {
minkowski() {
children();
// icosphere(r,2);
isosphere(r,q);
}
}
// unionRound helper
module shell(r,q=70) {
difference() {
clad(r,q) children();
children();
}
}
// inset 3d "negative offset", optimally on convex hull
// else jagged inner corners by q quality factor
module inset(r,q=20){
a= generatepoints(q)*r;
//#children();
intersection_for(t=a){
translate(t ) children();
}
}
/*
// The following is a sphere with some equidistant properties.
// Not strictly necessary
Kogan, Jonathan (2017) "A New Computationally Efficient Method for Spacing n Points on a Sphere," Rose-Hulman Undergraduate Mathematics Journal: Vol. 18 : Iss. 2 , Article 5.
Available at: https://scholar.rose-hulman.edu/rhumj/vol18/iss2/5 */
function sphericalcoordinate(x,y)= [cos(x )*cos(y ), sin(x )*cos(y ), sin(y )];
function NX(n=70,x)=
let(toDeg=57.2958,PI=acos(-1)/toDeg,
start=(-1.+1./(n-1.)),increment=(2.-2./(n-1.))/(n-1.) )
[ for (j= [0:n-1])let (s=start+j*increment )
sphericalcoordinate( s*x*toDeg, PI/2.* sign(s)*(1.-sqrt(1.-abs(s)))*toDeg)];
function generatepoints(n=70)= NX(n,0.1+1.2*n);
module isosphere(r,q=70){
a= generatepoints(q);
scale(r)hull()polyhedron(a,[[for(i=[0:len(a)-1])i]]);
}