-
Notifications
You must be signed in to change notification settings - Fork 4
/
inference.py
executable file
·154 lines (128 loc) · 5.57 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import time
import yaml
import logging
import torch
import sys
import os
from torch.utils.data import DataLoader
from model import build_model
from datasets import load_dataset
from datetime import datetime, timezone, timedelta
from utils.hash_functions import get_hash
output_path = os.getenv('OUTPUT_PATH', os.path.join('output', 'embeddings'))
def run_inference(cfg, args):
# Create output dir (default: output_path/<model>/<dataset>/<split>)
output_dir = args.output_dir or os.path.join(output_path,
cfg['model']['name'],
f"{cfg['dataset']['name']}{args.input_size or ''}",
cfg['dataset']['split'])
assert not os.path.isdir(output_dir) or len(os.listdir(output_dir)) == 0, \
(f"Output directory already exists and is not empty ({output_dir}). "
f"Specify the directory with --output_dir <path/to/output_dir>")
os.makedirs(output_dir, exist_ok=True)
logging.info(f"Running inference with model {cfg['model']['name']} for dataset {cfg['dataset']['name']}.")
# Init dataset
dataset = load_dataset(cfg)
# Init data loader
data_loader = DataLoader(
dataset,
**cfg['dataloader'],
)
logging.info('DataLoader initialized')
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# Init model
model = build_model(cfg)
model = model.to(device)
model.eval()
logging.info('Model loaded')
embeddings = []
labels = []
time_start = time.time()
num_batches = len(data_loader)
i = 0
# Run inference
logging.info(f'Starting inference on {len(dataset)} samples')
for batch in data_loader:
# Load input
input = batch['image']
label = batch['label']
input = input.to(device)
# Compute model embedding
with torch.no_grad():
embedding = model(input)
embeddings.append(embedding.cpu())
labels.append(label)
# Log progress
i += 1
if i % 100 == 0:
speed = i / (time.time() - time_start)
eta = timedelta(seconds=int((num_batches - i) / speed))
logging.info(f"Batch {i:5d}/{num_batches:4d} - Speed {speed:.2f} batches/s - ETA: {eta}")
logging.info('Finished inference')
batch_size = cfg['dataloader']['batch_size'] if 'batch_size' in cfg['dataloader'] else 1
sample_speed = (time.time() - time_start) / (i * batch_size)
logging.info(f'Average inference time: {sample_speed:.4f} s/sample')
# Combine batch embeddings
embeddings = torch.concat(embeddings, dim=0)
labels = torch.concat(labels, dim=0)
# Create hash codes
hash_codes = get_hash(embeddings, method='lsh', length=64)
logging.info('Hash codes generated')
# Save embeddings, labels, and hashes (using numpy because of smaller files)
logging.info(f'Saving {len(embeddings)} embeddings, labels, and hash_codes to {output_dir}')
torch.save(embeddings, os.path.join(output_dir, 'embeddings.pt'))
torch.save(labels, os.path.join(output_dir, 'labels.pt'))
torch.save(hash_codes, os.path.join(output_dir, 'hash_codes.pt'))
logging.info('Files saved')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config_file', type=str, required=True, help='Path to config file')
parser.add_argument('-o', '--output_dir', type=str, default=None,
help='Path to output dir for embeddings and labels '
'(default: output/embeddings/<model>/<dataset>/<split>)')
parser.add_argument('-d', '--dataset', type=str,
help='Overwrite the dataset name in the config file')
parser.add_argument('-s', '--split', type=str,
help='Overwrite the dataset split in the config file')
parser.add_argument('--input_size', type=int,
help='Overwrite the size of the model input in the config file')
parser.add_argument('--data_dir', type=str,
help='Path to data directory (default `data`)')
parser.add_argument('--log_level', type=str, default='INFO',
help='Log level (DEBUG, INFO, WARNING, ERROR)')
parser.add_argument('--log_file', type=str, default=None,
help='Log file')
args = parser.parse_args()
# Load config file
with open(args.config_file, 'r') as f:
cfg = yaml.safe_load(f)
# Overwrite dataset and split from optional args
if args.dataset:
cfg['dataset']['name'] = args.dataset
if args.split:
cfg['dataset']['split'] = args.split
if args.input_size:
cfg['model']['img_size'] = args.input_size
# Set data dir as env variable if specified
if args.data_dir:
os.environ['DATA_DIR'] = args.data_dir
# init logger
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H-%MZ")
log_file = args.log_file or f"logs/{current_time}_{cfg['model']['name']}_{cfg['dataset']['name']}.log"
os.makedirs(os.path.dirname(log_file), exist_ok=True)
logging.basicConfig(
level=args.log_level.upper(),
handlers=[logging.FileHandler(log_file), logging.StreamHandler()],
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logging.info(f'Config:\n {yaml.dump(cfg)}')
try:
run_inference(cfg, args)
except Exception as e:
# log potential error
logging.error(f'{type(e)}: {e}')
raise e