forked from hybridgroup/gocv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
objdetect.cpp
178 lines (136 loc) · 5.25 KB
/
objdetect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include "objdetect.h"
// CascadeClassifier
CascadeClassifier CascadeClassifier_New() {
return new cv::CascadeClassifier();
}
void CascadeClassifier_Close(CascadeClassifier cs) {
delete cs;
}
int CascadeClassifier_Load(CascadeClassifier cs, const char* name) {
return cs->load(name);
}
struct Rects CascadeClassifier_DetectMultiScale(CascadeClassifier cs, Mat img) {
std::vector<cv::Rect> detected;
cs->detectMultiScale(*img, detected); // uses all default parameters
Rect* rects = new Rect[detected.size()];
for (size_t i = 0; i < detected.size(); ++i) {
Rect r = {detected[i].x, detected[i].y, detected[i].width, detected[i].height};
rects[i] = r;
}
Rects ret = {rects, (int)detected.size()};
return ret;
}
struct Rects CascadeClassifier_DetectMultiScaleWithParams(CascadeClassifier cs, Mat img,
double scale, int minNeighbors, int flags, Size minSize, Size maxSize) {
cv::Size minSz(minSize.width, minSize.height);
cv::Size maxSz(maxSize.width, maxSize.height);
std::vector<cv::Rect> detected;
cs->detectMultiScale(*img, detected, scale, minNeighbors, flags, minSz, maxSz);
Rect* rects = new Rect[detected.size()];
for (size_t i = 0; i < detected.size(); ++i) {
Rect r = {detected[i].x, detected[i].y, detected[i].width, detected[i].height};
rects[i] = r;
}
Rects ret = {rects, (int)detected.size()};
return ret;
}
// HOGDescriptor
HOGDescriptor HOGDescriptor_New() {
return new cv::HOGDescriptor();
}
void HOGDescriptor_Close(HOGDescriptor hog) {
delete hog;
}
int HOGDescriptor_Load(HOGDescriptor hog, const char* name) {
return hog->load(name);
}
struct Rects HOGDescriptor_DetectMultiScale(HOGDescriptor hog, Mat img) {
std::vector<cv::Rect> detected;
hog->detectMultiScale(*img, detected);
Rect* rects = new Rect[detected.size()];
for (size_t i = 0; i < detected.size(); ++i) {
Rect r = {detected[i].x, detected[i].y, detected[i].width, detected[i].height};
rects[i] = r;
}
Rects ret = {rects, (int)detected.size()};
return ret;
}
struct Rects HOGDescriptor_DetectMultiScaleWithParams(HOGDescriptor hog, Mat img,
double hitThresh, Size winStride, Size padding, double scale, double finalThresh,
bool useMeanshiftGrouping) {
cv::Size wSz(winStride.width, winStride.height);
cv::Size pSz(padding.width, padding.height);
std::vector<cv::Rect> detected;
hog->detectMultiScale(*img, detected, hitThresh, wSz, pSz, scale, finalThresh,
useMeanshiftGrouping);
Rect* rects = new Rect[detected.size()];
for (size_t i = 0; i < detected.size(); ++i) {
Rect r = {detected[i].x, detected[i].y, detected[i].width, detected[i].height};
rects[i] = r;
}
Rects ret = {rects, (int)detected.size()};
return ret;
}
Mat HOG_GetDefaultPeopleDetector() {
return new cv::Mat(cv::HOGDescriptor::getDefaultPeopleDetector());
}
void HOGDescriptor_SetSVMDetector(HOGDescriptor hog, Mat det) {
hog->setSVMDetector(*det);
}
struct Rects GroupRectangles(struct Rects rects, int groupThreshold, double eps) {
std::vector<cv::Rect> vRect;
for (int i = 0; i < rects.length; ++i) {
cv::Rect r = cv::Rect(rects.rects[i].x, rects.rects[i].y, rects.rects[i].width,
rects.rects[i].height);
vRect.push_back(r);
}
cv::groupRectangles(vRect, groupThreshold, eps);
Rect* results = new Rect[vRect.size()];
for (size_t i = 0; i < vRect.size(); ++i) {
Rect r = {vRect[i].x, vRect[i].y, vRect[i].width, vRect[i].height};
results[i] = r;
}
Rects ret = {results, (int)vRect.size()};
return ret;
}
// QRCodeDetector
QRCodeDetector QRCodeDetector_New() {
return new cv::QRCodeDetector();
}
void QRCodeDetector_Close(QRCodeDetector qr) {
delete qr;
}
const char* QRCodeDetector_DetectAndDecode(QRCodeDetector qr, Mat input,Mat points,Mat straight_qrcode) {
cv::String *str = new cv::String(qr->detectAndDecode(*input,*points,*straight_qrcode));
return str->c_str();
}
bool QRCodeDetector_Detect(QRCodeDetector qr, Mat input,Mat points) {
return qr->detect(*input,*points);
}
const char* QRCodeDetector_Decode(QRCodeDetector qr, Mat input,Mat inputPoints,Mat straight_qrcode) {
cv::String *str = new cv::String(qr->detectAndDecode(*input,*inputPoints,*straight_qrcode));
return str->c_str();
}
bool QRCodeDetector_DetectMulti(QRCodeDetector qr, Mat input, Mat points) {
return qr->detectMulti(*input,*points);
}
bool QRCodeDetector_DetectAndDecodeMulti(QRCodeDetector qr, Mat input, CStrings* decoded, Mat points, struct Mats* qrCodes) {
std::vector<cv::String> decodedCodes;
std::vector<cv::Mat> straightQrCodes;
bool res = qr->detectAndDecodeMulti(*input, decodedCodes, *points, straightQrCodes);
if (!res) {
return res;
}
qrCodes->mats = new Mat[straightQrCodes.size()];
qrCodes->length = straightQrCodes.size();
for (size_t i = 0; i < straightQrCodes.size(); i++) {
qrCodes->mats[i] = new cv::Mat(straightQrCodes[i]);
}
const char **strs = new const char*[decodedCodes.size()];
for (size_t i = 0; i < decodedCodes.size(); ++i) {
strs[i] = decodedCodes[i].c_str();
}
decoded->length = decodedCodes.size();
decoded->strs = strs;
return res;
}