-
Notifications
You must be signed in to change notification settings - Fork 13
/
simcse_persona.py
95 lines (77 loc) · 3.15 KB
/
simcse_persona.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import config
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import sys
import datasets
from datasets import load_dataset
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
from torch.utils.data import DataLoader, Dataset
import json
from pprint import pprint
class BookCorpus(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, index):
text = self.data[index]
return text
def collate(self, unpacked_data):
return unpacked_data
def process_data(data,batch_size,device):
tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-bert-large-uncased")
model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-bert-large-uncased").to(device)
dataset = BookCorpus(data, tokenizer)
dataloader = DataLoader(dataset=dataset,
shuffle=True,
batch_size=batch_size,
collate_fn=dataset.collate)
data_dict = {}
data_dict['text'] = []
data_dict['embedding'] = []
with torch.no_grad():
for idx,batch_text in enumerate(dataloader):
inputs = tokenizer(batch_text, padding=True, truncation=True, return_tensors="pt").to(device)
embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
embeddings = embeddings.detach().cpu()
data_dict['text'].extend(batch_text)
data_dict['embedding'].extend(embeddings)
print(f'{idx} batch done with {idx*batch_size} samples')
return data_dict
def get_processed_persona(kind,processed_persona_path,require_label = True):
#processed_persona_path = config.processed_persona
if(require_label):
path = processed_persona_path + '/%s_merged_shuffle.txt' % kind
else:
path = processed_persona_path + '/%s.txt' % kind
with open(path, 'r') as f:
data = json.load(f)
return data
def process_persona(data):
'''
get only list of texts for batch training for
'''
sentence_list = []
for i,dict_i in enumerate(data):
conv = dict_i['conv']
sentence_list.extend(conv)
return sentence_list
def get_persona_dict(data_type):
processed_persona_path = config.processed_persona
data = get_processed_persona(data_type,processed_persona_path)
processed_data = process_persona(data)
return processed_data
# Import our models. The package will take care of downloading the models automatically
if __name__ == '__main__':
processed_persona_path = config.processed_persona
#train_data = get_processed_persona('train')
#val_data = get_processed_persona('dev')
test_data = get_processed_persona('test')
processed_test = process_persona(test_data)
device = torch.device("cuda")
batch_size = 32
val_dict = process_data(processed_test,batch_size,device)
torch.save(val_dict, '/data/hlibt/gradient_leakage/pytorch/data/personachat_processed/hidden_test_simcse.pt')