Skip to content

Latest commit

 

History

History
98 lines (79 loc) · 2.02 KB

matrice hessiana.md

File metadata and controls

98 lines (79 loc) · 2.02 KB

La matrice hessiana è la matrice delle derivate delle derivate parziali $$ H_{f} (x_{0},y_{0}) = \begin{bmatrix} \end{bmatrix}$$

[!esempio] $$ \begin{align} &\nabla f(x,y) = \begin{bmatrix} \sin y \ x \cos y \end{bmatrix} \

&H_{f}(x,y) = \begin{bmatrix} 0 & \cos y \ \cos y & -x\sin y \end{bmatrix} \end{align} $$

Forme quadratiche

[!def] Sia $f \in C^2(A)$ chiamiamo forma quadratica indotta da $H_{f}(x_{0},y_{0})$ $q : \mathbb{R}^2 \to \mathbb{R}$ $$ q(h_{1},h_{2})= \begin{bmatrix} h_{1} & h_{2} \end{bmatrix} H_{f}(x_{0},y_{0})\begin{bmatrix} h_{1} \ h_{2} \end{bmatrix} = \langle \begin{bmatrix} h_{1} & h_{2} \end{bmatrix}, H_{f}(x_{0},y_{0}) \cdot \begin{bmatrix} h_{1} \ h_{2} \end{bmatrix} \rangle $$

In modo esplicito:

$$ \begin{align} q(h_{1},h_{2}) &= \begin{bmatrix} h_{1} & h_{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{ \partial^2 f }{ \partial x^2 }(x_{0},y_{0}) & \frac{ \partial^2 f }{ \partial x \partial y } (x_{0},y_{0})\\ \frac{ \partial^2 f }{ \partial x\partial y }(x_{0},y_{0}) & \frac{ \partial^2 f }{ \partial y^2 }(x_{0},y_{0}) \end{bmatrix} \cdot \begin{bmatrix} h_{1} \\ h_{0} \end{bmatrix} = \\ &=\frac{ \partial^2 f }{ \partial x } h_{1}^2 + 2\frac{ \partial^2 f }{ \partial x \partial y} (x_{0},y_{0}) h_{1}h_{2} + \frac{ \partial^2 f }{ \partial y^2 }(x_{0},y_{0}) h_{2}^2 \end{align} $$

Segno della formula quadrata

$q$ definita $\iff \det A > 0$

  • definita positiva
  • Definita negativa

$q$ semi definita $\iff \det A = 0$

  • semidefinita positiva
  • semidefinita negativa

$q$ non definita $\iff \det A < 0$

ris

Definita positiva $\implies$ minimo semidefinita negativa $\implies$ flesso (sella di cavallo)

[!esempio] $f(x,y) = x \sin y$ $$ H_{f}(x,y) = \begin{bmatrix} 0 & \cos y \ \cos y & -x \sin y \end{bmatrix} $$ $$ H_{f}(0,0) = \begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} $$ $$ q(h_{1},h_{2}) = (h_{1}\quad h_{2}) \begin{bmatrix} 0 &1 \ 1 &0 \end{bmatrix} \begin{pmatrix} h_{1} \ h_{2} \end{pmatrix} = 2h_{1}h_{2}$$ f.q. indefinita