forked from melkor169/LeadSheetGen_Valence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_utils.py
executable file
·485 lines (399 loc) · 17.3 KB
/
gen_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 4 20:01:38 2020
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import json
import string
import numpy as np
import music21 as m21
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
#tf.compat.v1.disable_eager_execution()
from fractions import Fraction
from random import choice,randint
from copy import deepcopy
from aux_files import Encoder, Decoder
def generate_leadsheet(temperature,timesig,numOfBars,valence,density,gen_out,
TransEncoders,val_templates,dense_templates):
'''Main Function for generation in detailed steps'''
print('Start generating...')
'''0. Set Global Variables for the Generation'''
#for event based representation get Encoder-Decoder vocab
enc_vocab= len(TransEncoders[0].categories_[0])
dec_vocab = len(TransEncoders[1].categories_[0])
dec_seq_length = 359
enc_seq_length = 263
'''1. Create the Encoder Sequence'''
enc_list = create_encoder_ev(TransEncoders,timesig,numOfBars,val_templates,dense_templates,
valence,density)
'''2. Load the Inference Model'''
nnModel = chord_trans_ev_model(enc_vocab,dec_vocab)
'''3. Generate the Lead Sheet'''
allChords, allDurs, allMels = generate_chord_durs_ev_trans(nnModel, enc_list,
timesig, temperature, numOfBars, TransEncoders, enc_seq_length,
dec_seq_length)
'''4. Generate the MIDI and musicXML files'''
#create the final tokens ready to be parsed from music21
f_chords, f_durs, f_melody, f_bars = prepare_m21_events(allChords, allDurs, allMels)
#save midi and mxl files
chords_mel_mid(f_chords,f_durs,f_bars,f_melody,timesig,gen_out)
def generate_chord_durs_ev_trans(nnModel, enc_list,timesig, temperature, numOfBars,
TransEncoders, enc_seq_length, dec_seq_length):
'''Generation using the Transformer model'''
dec_sos_idx = int(np.where(TransEncoders[1].categories_[0] == 'sos')[0])+1 #shifted by 1
dec_eos_idx = int(np.where(TransEncoders[1].categories_[0] == 'eos')[0])
pad_length = enc_seq_length-len(enc_list)
enc_inp = np.array(enc_list+pad_length*[0]).reshape(1,-1)
dec_inp = [dec_sos_idx]
dec_out = []
isValid = False #variable to check if the decoded out is indeed a) numOfBars bars
#and b) the durations of each bar is timesig duration
cnt_valid = 1 #counter for the attempts
while not isValid:
#start generating
for _ in range(dec_seq_length):
allPreds = nnModel.predict([enc_inp, np.array(dec_inp).reshape(1,-1)])
aPred = allPreds[-1]
#apply diversity
token_pred = sample(aPred[-1,:].reshape(aPred.shape[-1],), temperature)
dec_out.append(token_pred)
if token_pred == dec_eos_idx:
#EOS
break
else:
#prepare for the next cycle
dec_inp.append(token_pred+1)
#convert them to tokens
allChords, allDurs, allMels = convert_to_ChordDurMels(dec_out,TransEncoders)
#check if the output is valid
is_ok = validation_check (allChords, allDurs, allMels, timesig, numOfBars)
if is_ok:
print('Succesfully Generated!')
isValid = True
else:#regenerate up to 3 more times
cnt_valid += 1
if cnt_valid > 4:
print('Exceptions found in the generated lead sheet...')
isValid = True
else:
dec_inp = [dec_sos_idx]
dec_out = []
return allChords, allDurs, allMels
def validation_check (allChords, allDurs, allMels, timesig, numOfBars):
'''Check if the output is valid in terms of desired user's parameters.
Sometimes due to "extreme" user's conditions the network may have some
mismatches such us less or more bars generated or wrong durations'''
isValid = False
#1. Check if they do not have the same length
length = len(allChords)
if any(len(lst) != length for lst in [allDurs, allMels]):
return isValid
#2. Check if all have numOfBars+1 'bar' events
chords_bar_idxs = [i for i, x in enumerate(allChords) if x == 'bar']
durs_bar_idxs = [i for i, x in enumerate(allDurs) if x == 'bar']
mels_bar_idxs = [i for i, x in enumerate(allMels) if x == 'bar']
if any(len(lst) != numOfBars+1 for lst in [chords_bar_idxs, durs_bar_idxs, mels_bar_idxs]):
return isValid
#3. Check of there is problem with duration of each bar according to the timesig
timesig = json.loads(timesig)
bar_lgt = 4*int(timesig[0])/int(timesig[1])
total_dur = numOfBars*bar_lgt
bar_idxs_d = {i for i, x in enumerate(allDurs) if x == "bar"}
f_durs = [v for i, v in enumerate(allDurs) if i not in bar_idxs_d]
f_durs_float = string_durs_to_float(f_durs)
f_durs_cnt = sum(f_durs_float)
if total_dur != f_durs_cnt:
return isValid
#check completed
isValid = True
return isValid
def chord_trans_ev_model(enc_vocab,dec_vocab):
'''Create the Inference Model Architecture and load the Weights
This is a tf 1.x keras implementation'''
num_layers = 4 #4
d_model = 48 #for Embedding
dff = 1536 #for Dense
num_heads = 8 #8
dropout_rate = 0.1
enc_input = tf.keras.layers.Input(shape=(None,), name = 'input_var1')
dec_input = tf.keras.layers.Input(shape=(None,), name = 'input_var2')
encoder = Encoder(enc_vocab+1, num_layers = num_layers, d_model = d_model, num_heads = num_heads, dff = dff, dropout = dropout_rate)
decoder = Decoder(dec_vocab+1, num_layers = num_layers, d_model = d_model*4, num_heads = num_heads, dff = dff, dropout = dropout_rate)
x = encoder(enc_input)
x = decoder([dec_input, x] , mask = encoder.compute_mask(enc_input))
dec_output = tf.keras.layers.Dense(dec_vocab, activation='softmax', name = 'out_var1')
out = dec_output(x)
model = tf.keras.models.Model(inputs=[enc_input, dec_input], outputs=out)
#load the weights
model.load_weights('./aux_files/ChordDurMel_Trans_w.h5')
return model
def sample(preds, temperature=1.0):
'''
@param preds: a np.array with the probabilities to all categories
@param temperature: the temperature. Below 1.0 the network makes more "safe"
predictions
@return: the index after the sampling
'''
# helper function to sample an index from a probability array
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)
def create_encoder_ev(TransEncoders,timesig,numOfBars,val_templates,dense_templates,valence,density):
'''Creates the encoder representation based on fully random templates from the test
dataset.'''
#create the encoder part. First define idxs
enc_sos_idx = int(np.where(TransEncoders[0].categories_[0] == 'sos')[0])+1 #all shifted
enc_eos_idx = int(np.where(TransEncoders[0].categories_[0] == 'eos')[0])+1
enc_bar_idx = int(np.where(TransEncoders[0].categories_[0] == 'bar')[0])+1
enc_timesig_idx = int(np.where(TransEncoders[0].categories_[0] == timesig)[0])+1
#select a random valence and density template
#select a template from >= numOfbars with the suggested average from the user
stop_condition = False
while not stop_condition:
try:
#set a random length to get a template
lgt_r = str(randint(numOfBars,40))
#check if the valence avg exists as an option
enc_val = deepcopy(choice(list(val_templates[lgt_r][valence])))
enc_val = enc_val[:numOfBars]
except:
continue
stop_condition = True
#do the same for density
stop_condition = False
while not stop_condition:
try:
#set a random length to get a template
lgt_r = str(randint(numOfBars,40))
#check if the valence avg exists as an option
enc_den = deepcopy(choice(list(dense_templates[lgt_r][density])))
enc_den = enc_den[:numOfBars]
except:
continue
stop_condition = True
enc_list = [enc_sos_idx,enc_bar_idx]
for i in range(0,numOfBars):
#check for Grouing
if i == 0:
curr_group_idx = int(np.where(TransEncoders[0].categories_[0] == 'start1')[0])+1
elif i == 1:
curr_group_idx = int(np.where(TransEncoders[0].categories_[0] == 'start2')[0])+1
elif i == numOfBars-2:
curr_group_idx = int(np.where(TransEncoders[0].categories_[0] == 'end1')[0])+1
elif i == numOfBars-1:
curr_group_idx = int(np.where(TransEncoders[0].categories_[0] == 'end2')[0])+1
else:
curr_group_idx = int(np.where(TransEncoders[0].categories_[0] == '-')[0])+1
#get the Valence Idx for this current bar
aVal = str(enc_val[i])
curr_val_idx = int(np.where(TransEncoders[0].categories_[0] == aVal)[0])+1
#get the Density Idx for this current bar
aDen = str(enc_den[i])
curr_den_idx = int(np.where(TransEncoders[0].categories_[0] == aDen)[0])+1
#apply with that order TimeSig,Grouping,Valence and bar
enc_list.extend([enc_timesig_idx,curr_group_idx,curr_val_idx,curr_den_idx,enc_bar_idx ])
enc_list.append(enc_eos_idx)
return enc_list
def convert_to_ChordDurMels(dec_out,TransEncoders):
'''Translates the output of the network to the actual tokens'''
dec_bar_idx = int(np.where(TransEncoders[1].categories_[0] == 'bar')[0])
bar_idxs = [i for i, x in enumerate(dec_out) if x == dec_bar_idx]
allChords = ['bar']
allDurs = ['bar']
allMels = ['bar']
for i in range(0,len(bar_idxs)-1):
#get the range
leftR = bar_idxs[i]+1
rigtR = bar_idxs[i+1]
#first for chords
for c in range(leftR,rigtR,3):
aChord_idx = dec_out[c]
aChord = str(TransEncoders[1].categories_[0][aChord_idx])
allChords.append(aChord)
for m in range(leftR+1,rigtR,3):
aMel_idx = dec_out[m]
aMel = str(TransEncoders[1].categories_[0][aMel_idx])
allMels.append(aMel)
#then for durs
for d in range(leftR+2,rigtR,3):
aDur_idx = dec_out[d]
aDur= str(TransEncoders[1].categories_[0][aDur_idx])
allDurs.append(aDur)
#add bar events
allChords.append('bar')
allDurs.append('bar')
allMels.append('bar')
return allChords,allDurs,allMels
def prepare_m21_events(allChords, allDurs, allMels):
'''Prepares (remove bar tokens) the lead sheet tokens to be
parsed for music21'''
#set grouping flags
bar_idxs = [i for i, x in enumerate(allDurs) if x == "bar"]
#get bar indications
bar_info = len(allDurs)*['no_bar']
bar_info[0] = 'bar'
for i in bar_idxs[:-1]:
bar_info[i+1] = 'bar'
#remove the bar idxs
bar_idxs_d = {i for i, x in enumerate(allDurs) if x == "bar"}
f_chords = [v for i, v in enumerate(allChords) if i not in bar_idxs_d]
f_durs = [v for i, v in enumerate(allDurs) if i not in bar_idxs_d]
f_melody = [v for i, v in enumerate(allMels) if i not in bar_idxs_d]
f_bars = [v for i, v in enumerate(bar_info) if i not in bar_idxs_d]
return f_chords, f_durs, f_melody, f_bars
def string_durs_to_float(bar_durs):
'''Auxilliary function to get m21 durations with floads
mainly for triplets'''
#create new list
float_durs = []
for b in bar_durs:
if '/' in b:
nom = int(b.split('/')[0])
den = int(b.split('/')[-1])
fr = Fraction(nom,den)
float_durs.append(fr)
else:
float_durs.append(float(b))
return float_durs
def chords_mel_mid(f_chords,f_durs,f_bars,allMelody,timesig,gen_out):
'''Conversion of the lead sheet events to MIDI and MUSICXML with
music21'''
#check if the path for generations exist
if not os.path.exists(gen_out):
try:
os.makedirs(gen_out)
except Exception as e:
print('An error raised due to', e)
print('Generated files will be created in the root dir instead.')
gen_out = './'
#create the m21 instance for MIDI
rc = m21.stream.Stream()
#set tonality and tempo (default 120 tempo or set it to tempo21)
kf = m21.key.Key('C', 'major')
tempo21 = m21.tempo.MetronomeMark(number=100)
rc.append(kf)
rc.append(tempo21)
#create m21 instance for XML
rx = m21.stream.Stream()
rx.append(m21.text.TextBox('Transformer Generation'))
#calculate all bars according to f_bars
all_bars = [index for index, value in enumerate(f_bars) if value == 'bar']
#add the last idx which is the len of the events
all_bars.append(len(f_bars))
melody = m21.stream.Part()
fl = m21.instrument.Flute()
melody.insert(0, fl)
chords = m21.stream.Part()
pp = m21.instrument.Piano()
chords.insert(0, pp)
melodyxml = m21.stream.Part()
melodyxml.insert(0, fl)
#get TimeSig nominator denominator
timesig = json.loads(timesig)
ts = m21.meter.TimeSignature(str(timesig[0])+'/'+str(timesig[1]))
for m in range(0,len(all_bars)-1):
#create measure
cho_m = m21.stream.Measure()
mel_m = m21.stream.Measure()
melxml_m = m21.stream.Measure()
if m == 0:
clef_s = m21.clef.TrebleClef()
clef_b = m21.clef.BassClef()
cho_m.insert(0, clef_b)
cho_m.insert(0, ts)
mel_m.insert(0, clef_s)
mel_m.insert(0, ts)
melxml_m.insert(0, clef_s)
melxml_m.insert(0, ts)
#for lead sheet only melody track will be given with chord symbols
bar_prev = all_bars[m]
bar_new = all_bars[m+1]
#get the sum of durations
bar_durs = f_durs[bar_prev:bar_new]
bar_durs = string_durs_to_float(bar_durs)
#get the chord list for this bar
bar_chords = f_chords[bar_prev:bar_new]
bar_melody = allMelody[bar_prev:bar_new]
offset = 0.0
prevChord = ''
for b in range(0,len(bar_chords)):
cho = bar_chords[b]
dur = bar_durs[b]
mel = bar_melody[b]
if cho == 'Rest':
aChord_t = m21.note.Rest()
aChord_name = 'Rest'
else:
aChord_s = m21.harmony.ChordSymbol(cho)
pitchNames = [p for p in aChord_s.pitches]
aChord_t = m21.chord.Chord(pitchNames)
aChord_name = aChord_t.pitchedCommonName
if prevChord == aChord_name:
apC = cho_m.pop(-1)
apC.quarterLength += float(dur)
cho_m.append(apC)
else:
aChord_t.offset = offset
aChord_t.quarterLength = float(dur)
cho_m.append(aChord_t)
#append Chord Symbol if it is not rest
if aChord_name != 'Rest':
aChord_s.offset = offset
aChord_s.writeAsChord = False
melxml_m.append(aChord_s) # add the chord symbol to mel track
prevChord = aChord_name
if mel == 'Rest' or mel =='eos': #check if to create a Note or Rest and set offset
aNote = m21.note.Rest()
else: #set pitch also
pitch = m21.pitch.Pitch()
pitch.midi = int(mel)
aNote = m21.note.Note()
aNote.pitch = pitch
#set onset and duration and append it
aNote.offset = offset
aNote.quarterLength = float(dur)
mel_m.append(aNote)
melxml_m.append(aNote)
offset = dur
############################
#append the measures to the parts
chords.append(cho_m)
melody.append(mel_m)
melodyxml.append(melxml_m)
#append the parts to the MIDI and XML streams
#create end bar lines
#chords[-1].append(m21.bar.Barline(type='final'))
#melody[-1].append(m21.bar.Barline(type='final'))
# MIDI
rc.append(melody)
rc.append(chords)
# XML
rx.append(melodyxml)
rx.append(chords)
#get random string seed
rstr = randomString(5)
#first MIDI
mf = m21.midi.translate.streamToMidiFile(rc)
midiOut = gen_out +str(len(all_bars)-1)+'_'+str(timesig)+'_'+'trans'+'_'+rstr+'.mid'
mf.open(midiOut, 'wb')
mf.write()
mf.close()
print(midiOut, ' has been created!')
#then musicXML
mx = m21.musicxml.m21ToXml.GeneralObjectExporter(rx)
xmlOut = gen_out+str(len(all_bars)-1)+'_'+str(timesig)+'_'+'trans'+'_'+rstr+'.xml'
mxText = mx.parse().decode('utf-8')
f = open(xmlOut, 'w')
f.write(mxText.strip())
f.close()
print(xmlOut, ' has been created!')
def randomString(stringLength=10):
"""Generate a random string of fixed length """
letters = string.ascii_lowercase
return ''.join(choice(letters) for i in range(stringLength))